第二篇 MapReduce日志分析
做日志分析之前,我觉得要先了解下MapReduce,网上很多,你可以搜下,这位哥们讲的还不错 点击打开链接
日志长这样的:
- <?PHP if ( ! defined('ROOT_PATH')) exit('No direct script access allowed'); ?>
- [2016-06-01 00:10:27] POST 218.82.131.157 /user/HealthCenter.PHP?m=submit uid=14&hash=dd16e3e4d0e8786f13166a4065f24fa0&num=13.0&type=1&time=1464711029 0(OK)
- [2016-06-01 08:10:27] POST 218.82.131.157 /user/HealthCenter.PHP?m=submit uid=14&hash=863fbf2535639c16d885a55c78dff665&num=13.0&type=1&time=1464739829 0(OK)
- [2016-06-01 09:10:28] POST 124.74.69.134 /user/HealthCenter.PHP?m=submit uid=14&hash=9a310b722e795e2673cdba76bea29b26&num=13.0&type=1&time=1464743429 0(OK)
- [2016-06-01 09:16:05] GET 124.74.69.134 /index/Main.PHP?hash=eac57627d3407963dab81da2bb07e378&page_num=1&page_size=10&time=1464743769&uid=8 0(OK)
- [2016-06-01 10:01:30] GET 124.74.69.134 /index/Main.PHP?hash=7979353ef669c61f75a5a7e9d39cd646&page_num=1&page_size=10&time=1464746494&uid=8 0(OK)
- [2016-06-01 10:10:28] POST124.74.69.134 /user/HealthCenter.PHP?m=submit uid=14&hash=98012832769b5a0e45f036e92032f1ef&num=13.0&type=1&time=1464747029 0(OK)
- [2016-06-01 10:11:12] GET 124.74.69.134 /index/Main.PHP?hash=77938b0fdf1b733a9e15d9a2055767d1&page_num=1&page_size=10&time=1464747076&uid=8 0(OK)
- [2016-06-01 10:48:00] GET 124.74.69.134 /index/Main.PHP?hash=1a1979e9fdcfca2f17bf1b287f4508aa&page_num=1&page_size=10&time=1464749284&uid=8 0(OK)
- [2016-06-01 10:48:42] POST 124.74.69.134 /user/Position.PHP uid=9&address=undefine&latitude=4.9E-324&time=1464749394&type=1&hash=d4aebe936762be3a0420b62a77e37b00&longitude=4.9E-324 0(OK)
分别是: 时间 请求方式 IP 请求地址 参数 返回值
每天产生一个,分别已Y-m-d.PHP 方式命名.
达到的目的是: 统计每天 每个接口的请求次数,以返回结果分组,
编写程序
- <span style="font-size:14px;">/**
- * @ClassName: LogMapReduce.java
- * @author 273030282@qq.com
- * @version V1.0
- * @Date 2016-7-11 10:20:11
- * @Description: TODO
- *
- */
- package www.com.cn;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- public class LogMapReduce extends Configured implements Tool {
- public static void main(String[] args) {
- Configuration conf = new Configuration();
- try {
- int res = ToolRunner.run(conf,new LogMapReduce(),args);
- System.exit(res);
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- @Override
- public int run(String[] args) throws Exception {
- Configuration conf = new Configuration();
- final Job job = Job.getInstance(conf,"LogParaseMapReduce");
- job.setJarByClass(LogMapReduce.class);
- FileInputFormat.setInputPaths(job,args[0]);
- job.setMapperClass(MyMapper.class);
- job.setReducerClass(MyReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileOutputFormat.setOutputPath(job,new Path(args[1]));
- boolean success = job.waitForCompletion(true);
- if (success) {
- System.out.println("process success!");
- } else {
- System.out.println("process Failed!");
- }
- return 0;
- }
- enum Counter{
- LINESKIP,}
- static class MyMapper extends Mapper<LongWritable,Text,IntWritable> {
- private final static IntWritable one = new IntWritable(1);
- public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException {
- if ("".equals(value)) {
- return;
- }
- String line = value.toString();
- if (line.length() == 0 || !"[".equals(line.substring(0,1))) {
- return;
- }
- try {
- String[] lines = line.split(" ");
- String data = lines[0].replace("[","") + "\t";
- if ("GET".equals(lines[2])) {
- String url = "";
- String[] urls = lines[4].split("[?]");
- String[] params = urls[1].split("[&]");
- if (params[0].indexOf('m') != -1) {
- url = urls[0] + "?" + params[0];
- } else {
- url = urls[0];
- }
- data += url + "\t" + lines[5];
- } else if ("POST".equals(lines[2])) {
- data += lines[4] + "\t" + lines[6];
- }
- Text out = new Text(data);
- context.write(out,one);
- } catch (ArrayIndexOutOfBoundsException e) {
- context.getCounter(Counter.LINESKIP).increment(1);
- }
- }
- }
- static class MyReducer extends Reducer<Text,IntWritable,IntWritable> {
- protected void reduce(Text key,Iterable<IntWritable> values,InterruptedException {
- int count = 0;
- for (IntWritable v: values) {
- count = count + 1;
- }
- context.write(key,new IntWritable(count));
- }
- }
- }</span>
然后将程序打jar包:LogMapReduce.jar
打包时注意选择 Main class,这时候选择就不用在调用时指定包目录了
Shell脚本
脚本分为两个,一个执行脚本,一个运行执行的脚本
运行脚本 run.sh:
- #! /bin/bash
- d=`date "+%Y-%m-%d %H:%M:%S"`
- echo "{$d} start..."
- file=$1;
- if [ -f ${file} ];then
- echo "${file} exists"
- else
- echo "${file} not exists"
- exit 0
- fi
- #获取文件名
- fileinfo=(${file//// })
- filename=${fileinfo[$[${#fileinfo[@]}-1]]}
- info=(${filename//./ })
- name=${info[0]}
- echo "hadoop put file to /api/put/${filename}"
- hadoop fs -put ${file} /api/put/${filename}
- echo "call LogMapReduce.jar"
- hadoop jar /home/hadoop/hadoop-2.7.0/share/hadoop/mapreduce/LogMapReduce.jar /api/put/${filename} /api/out/${name}
- echo "hive load into api_logs"
- hive -e "load data inpath '/api/out/${name}/part-r-00000' into table apis.api_logs"
- echo "delete /api/put/${filename}"
- hadoop fs -rm /api/put/${filename}
- echo "delete /api/out/${name}"
- hadoop fs -rmr /api/out/${name}
- echo "end"
- ~
大致的逻辑,接收传入的文件(含路径),然后分割,得到文件名,然后将文件put到hadoop,调用LogMapReduce.jar,将结果插入到hive,删除文件
运行执行的脚本 process_2016_06.sh:
- #!/bin/sh
- for((i=5;i<31;i++))
- do
- logdate=`printf "%'.02d" $i`
- ./run.sh /home/hadoop/data/2016-06-${logdate}.PHP
- done
也可以折腾在一起.