【tensorflow2.0】使用单GPU训练模型

前端之家收集整理的这篇文章主要介绍了【tensorflow2.0】使用单GPU训练模型前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。

训练过程的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代。

当数据准备过程还是模型训练时间的主要瓶颈时,我们可以使用更多进程来准备数据。

当参数迭代过程成为训练时间的主要瓶颈时,我们通常的方法是应用GPU或者Google的TPU来进行加速。

详见《用GPU加速Keras模型——Colab免费GPU使用攻略》

https://zhuanlan.zhihu.com/p/68509398

无论是内置fit方法,还是自定义训练循环,从cpu切换成单GPU训练模型都是非常方便的,无需更改任何代码。当存在可用的GPU时,如果不特意指定device,tensorflow会自动优先选择使用GPU来创建张量和执行张量计算。

但如果是在公司或者学校实验室的服务器环境,存在多个GPU和多个使用者时,为了不让单个同学的任务占用全部GPU资源导致其他同学无法使用(tensorflow默认获取全部GPU的全部内存资源权限,但实际上只使用一个GPU的部分资源),我们通常会在开头增加以下几行代码以控制每个任务使用的GPU编号和显存大小,以便其他同学也能够同时训练模型。

在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU

注:以下代码只能在Colab 上才能正确执行。

可通过以下colab链接测试效果《tf_单GPU》:

https://colab.research.google.com/drive/1r5dLoeJq5z01sU72BX2M5UiNSkuxsEFe

%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import * 
 
# 打印时间分割线
@tf.function
def printbar():
    ts = tf.timestamp()
    today_ts = ts%(24*60*60)
 
    hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
    minite = tf.cast((today_ts%3600)//60,tf.int32)
    second = tf.cast(tf.floor(today_ts%60),tf.int32)
 
     timeformat(m):
        if tf.strings.length(tf.strings.format("{}",m))==1:
            return(tf.strings.format(0{}"else tf.strings.join([timeformat(hour),timeformat(minite),timeformat(second)],separator = :)
    tf.print(=========="*8,end = ""print(timestring)

一,GPU设置

gpus = tf.config.list_physical_devices(GPU)
 
if gpus:
    gpu0 = gpus[0] 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0,True) 设置GPU显存用量按需使用
     或者也可以设置GPU显存为固定使用量(例如:4G)
    tf.config.experimental.set_virtual_device_configuration(gpu0,
        [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) 
    tf.config.set_visible_devices([gpu0],) 
比较GPU和cpu的计算速度

printbar()
with tf.device(/gpu:0):
    tf.random.set_seed(0)
    a = tf.random.uniform((10000,100),minval = 0,maxval = 3.0)
    b = tf.random.uniform((100,100000),1)">)
    c = a@b
    tf.print(tf.reduce_sum(tf.reduce_sum(c,axis = 0),axis=0))
printbar()

printbar()
with tf.device(/cpu:00))
printbar()
================================================================================11:59:21
2.24953778e+11
================================================================================11:59:23
================================================================================11:59:23
2.24953795e+11
================================================================================11:59:29

二,准备数据

MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,1)">MAX_LEN)
 
MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1
 
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()
 
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

三,定义模型

tf.keras.backend.clear_session()
 
 create_model():
 
    model = models.Sequential()
 
    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = relu))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,1)">))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM,activation = softmax))
    return(model)
 
model = create_model()
model.summary()
Model: sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None,300,7)            216874    

conv1d (Conv1D)              (None,296,64)           2304      

max_pooling1d (MaxPooling1D) (None,148,64)           0         

conv1d_1 (Conv1D)            (None,146,32)           6176      

max_pooling1d_1 (MaxPooling1 (None,73,32)            0         

flatten (Flatten)            (None,2336)              0         

dense (Dense)                (None,46)                107502    
=================================================================
Total params: 332,856
Trainable params: 332,1)">
Non-trainable params: 0
_________________________________________________________________

四,训练模型

optimizer = optimizers.Nadam()
loss_func = losses.SparseCategoricalCrossentropy()
 
train_loss = metrics.Mean(name='train_loss')
train_metric = metrics.SparseCategoricalAccuracy(name=train_accuracy)
 
valid_loss = metrics.Mean(name=valid_loss)
valid_metric = metrics.SparseCategoricalAccuracy(name=valid_accuracy)
 
@tf.function
 train_step(model,features,labels):
    with tf.GradientTape() as tape:
        predictions = model(features,training = True)
        loss = loss_func(labels,predictions)
    gradients = tape.gradient(loss,model.trainable_variables)
    optimizer.apply_gradients(zip(gradients,model.trainable_variables))
 
    train_loss.update_state(loss)
    train_metric.update_state(labels,predictions)
 
@tf.function
 valid_step(model,labels):
    predictions = model(features)
    batch_loss = train_model(model,ds_train,ds_valid,epochs):
    for epoch in tf.range(1,epochs+1):
 
        for features,labels in ds_train:
            train_step(model,labels)
 
         ds_valid:
            valid_step(model,labels)
 
        logs = Epoch={},Loss:{},Accuracy:{},Valid Loss:{},Valid Accuracy:{}'
 
        if epoch%1 ==0:
            printbar()
            tf.print(tf.strings.format(logs,(epoch,train_loss.result(),train_metric.result(),valid_loss.result(),valid_metric.result())))
            tf.)
 
        train_loss.reset_states()
        valid_loss.reset_states()
        train_metric.reset_states()
        valid_metric.reset_states()
 
train_model(model,ds_test,10)
================================================================================12:01:11
Epoch=1,Loss:2.00887108,Accuracy:0.470273882,Valid Loss:1.6704694,Valid Accuracy:0.566340148

================================================================================12:01:13
Epoch=2,Loss:1.47044504,Accuracy:0.618681788,Valid Loss:1.51738906,Valid Accuracy:0.630454123

================================================================================12:01:14
Epoch=3,Loss:1.1620506,Accuracy:0.700289488,Valid Loss:1.52190566,Valid Accuracy:0.641139805

================================================================================12:01:16
Epoch=4,Loss:0.878907442,Accuracy:0.771654427,Valid Loss:1.67911685,Valid Accuracy:0.644256473

================================================================================12:01:17
Epoch=5,Loss:0.647668123,Accuracy:0.836450696,Valid Loss:1.93839979,Valid Accuracy:0.642475486

================================================================================12:01:19
Epoch=6,Loss:0.487838209,Accuracy:0.880538881,Valid Loss:2.20062685,Valid Accuracy:0.642030299

================================================================================12:01:21
Epoch=7,Loss:0.390418053,Accuracy:0.90670228,Valid Loss:2.32795334,Valid Accuracy:0.646482646

================================================================================12:01:22
Epoch=8,Loss:0.328294098,Accuracy:0.92351371,Valid Loss:2.44113493,Valid Accuracy:0.644701719

================================================================================12:01:24
Epoch=9,Loss:0.286735713,Accuracy:0.931195736,Valid Loss:2.5071857,Valid Accuracy:0.642920732

================================================================================12:01:25
Epoch=10,Loss:0.256434649,Accuracy:0.936428428,Valid Loss:2.60177088,Valid Accuracy:0.640249312

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

原文链接:/tensorflow/991516.html

猜你在找的Tensorflow相关文章