本篇文章介绍在spark中调用训练好的tensorflow模型进行预测的方法。
本文内容的学习需要一定的spark和scala基础。
如果使用pyspark的话会比较简单,只需要在每个excutor上用Python加载模型分别预测就可以了。
但工程上为了性能考虑,通常使用的是scala版本的spark。
本篇文章我们通过TensorFlow for Java 在spark中调用训练好的tensorflow模型。
利用spark的分布式计算能力,从而可以让训练好的tensorflow模型在成百上千的机器上分布式并行执行模型推断。
〇,spark-scala调用tensorflow模型概述
在spark(scala)中调用tensorflow模型进行预测需要完成以下几个步骤。
(1)准备protobuf模型文件
(2)创建spark(scala)项目,在项目中添加java版本的tensorflow对应的jar包依赖
(3)在spark(scala)项目中driver端加载tensorflow模型调试成功
(4)在spark(scala)项目中通过RDD在excutor上加载tensorflow模型调试成功
(5) 在spark(scala)项目中通过DataFrame在excutor上加载tensorflow模型调试成功
一,准备protobuf模型文件
我们使用tf.keras 训练一个简单的线性回归模型,并保存成protobuf文件。
import tensorflow as tf from tensorflow.keras models,layers,optimizers ## 样本数量 n = 800 # 生成测试用数据集 X = tf.random.uniform([n,2],minval=-10,maxval=10) w0 = tf.constant([[2.0],[-1.0]]) b0 = tf.constant(3.0) Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) @表示矩阵乘法,增加正态扰动 # 建立模型 tf.keras.backend.clear_session() inputs = layers.Input(shape = (2,),name ="inputs") 设置输入名字为inputs outputs = layers.Dense(1,name = outputs")(inputs) 设置输出名字为outputs linear = models.Model(inputs = inputs,outputs = outputs) linear.summary() # 使用fit方法进行训练 linear.compile(optimizer=rmsprop",loss=msemae"]) linear.fit(X,Y,batch_size = 8,epochs = 100) tf.print(w = ].kernel) tf.b = ].bias) # 将模型保存成pb格式文件 export_path = ./data/linear_model/ version = 1" 后续可以通过版本号进行模型版本迭代与管理 linear.save(export_path+version,save_format=tf)
!ls {export_path+version} 查看模型文件相关信息 !saved_model_cli show --dir {export_path+str(version)} --all
模型文件信息中这些标红的部分都是后面有可能会用到的。
二,创建spark(scala)项目,在项目中添加java版本的tensorflow对应的jar包依赖
如果使用maven管理项目,需要添加如下 jar包依赖
<!-- https://mvnrepository.com/artifact/org.tensorflow/tensorflow --> <dependency> <groupId>org.tensorflow</groupId> <artifactId>tensorflow</artifactId> <version>1.15.0</version> </dependency>
也可以从下面网址中直接下载 org.tensorflow.tensorflow的jar包
以及其依赖的org.tensorflow.libtensorflow 和 org.tensorflowlibtensorflow_jni的jar包 放到项目中。
https://mvnrepository.com/artifact/org.tensorflow/tensorflow/1.15.0
三, 在spark(scala)项目中driver端加载tensorflow模型调试成功
我们的示范代码在jupyter notebook中进行演示,需要安装toree以支持spark(scala)。
import scala.collection.mutable.WrappedArray import org.{tensorflow=>tf} //注:load函数的第二个参数一般都是“serve”,可以从模型文件相关信息中找到 val bundle = tf.SavedModelBundle .load("/Users/liangyun/CodeFiles/eat_tensorflow2_in_30_days/data/linear_model/1","serve") 注:在java版本的tensorflow中还是类似tensorflow1.0中静态计算图的模式,需要建立Session,指定Feed的数据和fetch的结果,然后 run. //注:如果有多个数据需要喂入,可以连续用用多个Feed方法注:输入必须是float类型 val sess = bundle.session() val x = tf.Tensor.create(Array(Array(1.0f,2.0f),Array(2.0f,3.0f))) val y = sess.runner().Feed("serving_default_inputs:0",x) .fetch("StatefulPartitionedCall:0").run().get(0) val result = Array.ofDim[Float](y.shape()(0).toInt,y.shape()(1).toInt) y.copyTo(result) if(x != null) x.close() if(y != ) y.close() if(sess != ) sess.close() if(bundle != ) bundle.close() result
输出如下:
Array(Array(3.019596), Array(3.9878292))
四,在spark(scala)项目中通过RDD在excutor上加载tensorflow模型调试成功
下面我们通过广播机制将Driver端加载的TensorFlow模型传递到各个excutor上,并在excutor上分布式地调用模型进行推断。
import org.apache.spark.sql.SparkSession import scala.collection.mutable.WrappedArray import org.{tensorflow=>tf} val spark = SparkSession .builder() .appName("TfRDD") .enableHiveSupport() .getOrCreate() val sc = spark.sparkContext 在Driver端加载模型 val bundle = tf.SavedModelBundle .load("/Users/liangyun/CodeFiles/master_tensorflow2_in_20_hours/data/linear_model/1",1)">利用广播将模型发送到excutor上 val broads = sc.broadcast(bundle) 构造数据集 val rdd_data = sc.makeRDD(List(Array(1.0f,Array(3.0f,5.0f),Array(6.0f,7.0f),Array(8.0f,1)">.0f))) 通过mapPartitions调用模型进行批量推断 val rdd_result = rdd_data.mapPartitions(iter => { val arr = iter.toArray val model = broads.value val sess = model.session() val x = tf.Tensor.create(arr) val y = sess.runner().Feed("serving_default_inputs:0") 将预测结果拷贝到相同shape的Float类型的Array中 val result = Array.ofDim[Float](y.shape()(0).toInt,1)">).toInt) y.copyTo(result) result.iterator }) rdd_result.take(5) bundle.close
输出如下:
Array(Array(3.019596), Array(3.9264367), Array(7.8607616), Array(15.974984)
五, 在spark(scala)项目中通过DataFrame在excutor上加载tensorflow模型调试成功
除了可以在Spark的RDD数据上调用tensorflow模型进行分布式推断,
我们也可以在DataFrame数据上调用tensorflow模型进行分布式推断。
tf} object TfDataFrame extends Serializable{ def main(args:Array[String]):Unit = { val spark = SparkSession .builder() .appName("TfDataFrame") .enableHiveSupport() .getOrCreate() val sc = spark.sparkContext import spark.implicits._ val bundle = tf.SavedModelBundle .load("/Users/liangyun/CodeFiles/master_tensorflow2_in_20_hours/data/linear_model/1",1)">) val broads = sc.broadcast(bundle) 构造预测函数,并将其注册成sparksql的udf val tfpredict = (features:WrappedArray[Float]) => { val bund = broads.value val sess = bund.session() val x = tf.Tensor.create(Array(features.toArray)) val y = sess.runner().Feed("serving_default_inputs:0") val result = Array.ofDim[Float](y.shape()(0).toInt,1)">).toInt) y.copyTo(result) val y_pred = result(0)(0) y_pred } spark.udf.register("tfpredict"构造DataFrame数据集,将features放到一列中 val dfdata = sc.parallelize(List(Array(1.0f,Array(7.0f,8.0f))).toDF("features") dfdata.show 调用sparksql预测函数,增加一个新的列作为y_preds val dfresult = dfdata.selectExpr("features","tfpredict(features) as y_preds") dfresult.show bundle.close } }
TfDataFrame.main(Array())
+----------+
| features|
+----------+
|[1.0, 2.0]|
|[3.0, 5.0]|
|[7.0, 8.0]|
+----------+
+----------+---------+
| features| y_preds|
+----------+---------+
|[1.0, 2.0]| 3.019596|
|[3.0, 5.0]|3.9264367|
|[7.0, 8.0]| 8.828995|
+----------+---------+
以上我们分别在spark 的RDD数据结构和DataFrame数据结构上实现了调用一个tf.keras实现的线性回归模型进行分布式模型推断。
在本例基础上稍作修改则可以用spark调用训练好的各种复杂的神经网络模型进行分布式模型推断。
但实际上tensorflow并不仅仅适合实现神经网络,其底层的计算图语言可以表达各种数值计算过程。
利用其丰富的低阶API,我们可以在tensorflow2.0上实现任意机器学习模型,
结合tf.Module提供的便捷的封装功能,我们可以将训练好的任意机器学习模型导出成模型文件并在spark上分布式调用执行。
这无疑为我们的工程应用提供了巨大的想象空间。
参考:
开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/
GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days
原文链接:/tensorflow/991513.html