【tensorflow2.0】处理图片数据-cifar2分类

前端之家收集整理的这篇文章主要介绍了【tensorflow2.0】处理图片数据-cifar2分类前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

1、准备数据

cifar2数据集为cifar10数据集的子集,只包括前两种类别airplane和automobile。

训练集有airplane和automobile图片各5000张,测试集有airplane和automobile图片各1000张。

cifar2任务的目标是训练一个模型来对飞机airplane和机动车automobile两种图片进行分类

我们准备的Cifar2数据集的文件结构如下所示。

在tensorflow中准备图片数据的常用方案有两种,第一种是使用tf.keras中的ImageDataGenerator工具构建图片数据生成器。

第二种是使用tf.data.Dataset搭配tf.image中的一些图片处理方法构建数据管道。

第一种方法更为简单,其使用范例可以参考以下文章

https://zhuanlan.zhihu.com/p/67466552

第二种方法是TensorFlow的原生方法,更加灵活,使用得当的话也可以获得更好的性能

我们此处介绍第二种方法

import tensorflow as tf 
from tensorflow.keras  datasets,layers,models
 
BATCH_SIZE = 100
 
def load_image(img_path,size = (32,32)):
    label = tf.constant(1,tf.int8) if tf.strings.regex_full_match(img_path,".*/automobile/.*") \
            else tf.constant(0,tf.int8)
    img = tf.io.read_file(img_path)
    img = tf.image.decode_jpeg(img) #注意此处为jpeg格式
    img = tf.image.resize(img,size)/255.0
    return(img,label)
 
 使用并行化预处理num_parallel_calls 和预存数据prefetch来提升性能
ds_train = tf.data.Dataset.list_files(./data/cifar2/train/*/*.jpg) \
           .map(load_image,num_parallel_calls=tf.data.experimental.AUTOTUNE) \
           .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
           .prefetch(tf.data.experimental.AUTOTUNE)  
 
ds_test = tf.data.Dataset.list_files(./data/cifar2/test/*/*.jpgtf.data.experimental.AUTOTUNE) \
           .batch(BATCH_SIZE) \
           .prefetch(tf.data.experimental.AUTOTUNE) 

for x,y in ds_train.take(1):
    print(x.shape,y.shape)

(100,32,3) (100,) 

2、定义模型

使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

此处选择使用函数式API构建模型。

tf.keras.backend.clear_session() 清空会话
 
inputs = layers.Input(shape=(32,3))
x = layers.Conv2D(32,kernel_size=(3,1)">))(inputs)
x = layers.MaxPool2D()(x)
x = layers.Conv2D(64,kernel_size=(5,5))(x)
x = layers.MaxPool2D()(x)
x = layers.Dropout(rate=0.1)(x)
x = layers.Flatten()(x)
x = layers.Dense(32,activation='relu')(x)
outputs = layers.Dense(1,activation = sigmoid)(x)
 
model = models.Model(inputs = inputs,outputs = outputs)
 
model.summary()

3、训练模型

训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。 

 datetime
 
logdir = ./data/keras_model/" + datetime.datetime.now().strftime(%Y%m%d-%H%M%S)
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir,histogram_freq=1)
 
model.compile(
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),loss=tf.keras.losses.binary_crossentropy,metrics=[accuracy]
    )
 
history = model.fit(ds_train,epochs= 10,validation_data=ds_test,callbacks = [tensorboard_callback],workers = 4)
Epoch 1/10
100/100 [==============================] - 2205s 22s/step - loss: 0.4632 - accuracy: 0.7786 - val_loss: 0.3375 - val_accuracy: 0.8620
Epoch 2/10
100/100 [==============================] - 11s 110ms/step - loss: 0.3346 - accuracy: 0.8565 - val_loss: 0.2617 - val_accuracy: 0.8965
Epoch 3/10
100/100 [==============================] - 11s 111ms/step - loss: 0.2687 - accuracy: 0.8883 - val_loss: 0.2183 - val_accuracy: 0.9165
Epoch 4/10
100/100 [==============================] - 11s 110ms/step - loss: 0.2171 - accuracy: 0.9128 - val_loss: 0.1811 - val_accuracy: 0.9280
Epoch 5/10
100/100 [==============================] - 11s 114ms/step - loss: 0.1860 - accuracy: 0.9268 - val_loss: 0.1798 - val_accuracy: 0.9265
Epoch 6/10
100/100 [==============================] - 11s 112ms/step - loss: 0.1646 - accuracy: 0.9358 - val_loss: 0.1818 - val_accuracy: 0.9260
Epoch 7/10
100/100 [==============================] - 11s 113ms/step - loss: 0.1443 - accuracy: 0.9426 - val_loss: 0.1740 - val_accuracy: 0.9290
Epoch 8/10
100/100 [==============================] - 11s 113ms/step - loss: 0.1301 - accuracy: 0.9469 - val_loss: 0.1635 - val_accuracy: 0.9325
Epoch 9/10
100/100 [==============================] - 11s 112ms/step - loss: 0.1096 - accuracy: 0.9585 - val_loss: 0.1758 - val_accuracy: 0.9315
Epoch 10/10
100/100 [==============================] - 11s 113ms/step - loss: 0.0961 - accuracy: 0.9628 - val_loss: 0.1595 - val_accuracy: 0.9415

4、评估模型

 %load_ext tensorboard
# %tensorboard --logdir ./data/keras_model
from tensorboard  notebook
notebook.list() 
 在tensorboard中查看模型
notebook.start(--logdir ./data/keras_model")

或者我们自己绘图:首先我们构造数据

 pandas as pd 
dfhistory = pd.DataFrame(history.history)
dfhistory.index = range(1,len(dfhistory) + 1)
dfhistory.index.name = epoch
dfhistory 

然后绘制:

%matplotlib inline
%config InlineBackend.figure_format = svg'
 
 matplotlib.pyplot as plt
 
def plot_metric(history,metric):
    train_metrics = history.history[metric]
    val_metrics = history.history[val_'+metric]
    epochs = range(1,len(train_metrics) + 1)
    plt.plot(epochs,train_metrics,bo--ro-)
    plt.title(Training and validation  metric)
    plt.xlabel(Epochs)
    plt.ylabel(metric)
    plt.legend([train_"+metric,1)">metric])
    plt.show()
plot_metric(history,1)">loss)
plot_metric(history,1)">")

评估模型:

 可以使用evaluate对数据进行评估
val_loss,val_accuracy = model.evaluate(ds_test,workers=4)
print(val_loss,val_accuracy)

20/20 [==============================] - 2s 80ms/step - loss: 0.1595 - accuracy: 0.9415

0.15954092144966125 0.9415000081062317

5、使用模型

可以使用model.predict(ds_test)进行预测。

也可以使用model.predict_on_batch(x_test)对一个批量进行预测。

model.predict(ds_test)
array([[1.1052408e-01],[3.4282297e-022.7544077e-039.9993896e-01]],dtype=float32)
in ds_test.take(1print(model.predict_on_batch(x[0:20]))
[[9.8728174e-01]
 [2.0267103e-02]
 [9.0806475e-03]
 [9.9996555e-01]
 [4.5376007e-02]
 [1.2818890e-03]
 [1.8698535e-03]
 [2.2900696e-03]
 [8.6169255e-01]
 [6.2768459e-06]
 [1.2383183e-02]
 [4.3949869e-02]
 [7.9778886e-01]
 [9.9822074e-01]
 [9.9993134e-01]
 [8.6685091e-02]
 [3.7480664e-02]
 [9.9652690e-01]
 [9.2210865e-01]
 [1.6160560e-03]]

6、@R_500_301@

推荐使用TensorFlow原生方式@R_500_301@。

 保存权重,该方式仅仅保存权重张量
model.save_weights(./data/tf_model_weights.ckpt',save_format = tf @R_500_301@结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署
 
model.save(./data/tf_model_savedmodelprint(export saved model.)
 
model_loaded = tf.keras.models.load_model()
model_loaded.evaluate(ds_test)

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

原文链接:/tensorflow/991502.html

猜你在找的Tensorflow相关文章