我就废话不多说了,直接上代码吧!
import torch import torch.nn as nn import torch.nn.functional as F class CatBnAct(nn.Module): def __init__(self,in_chs,activation_fn=nn.ReLU(inplace=True)): super(CatBnAct,self).__init__() self.bn = nn.BatchNorm2d(in_chs,eps=0.001) self.act = activation_fn def forward(self,x): x = torch.cat(x,dim=1) if isinstance(x,tuple) else x return self.act(self.bn(x)) class BnActConv2d(nn.Module): def __init__(self,s,out_chs,kernel_size,stride,padding=0,groups=1,activation_fn=nn.ReLU(inplace=True)): super(BnActConv2d,eps=0.001) self.act = activation_fn self.conv = nn.Conv2d(in_chs,padding,groups=groups,bias=False) def forward(self,x): return self.conv(self.act(self.bn(x))) class InputBlock(nn.Module): def __init__(self,num_init_features,kernel_size=7,padding=3,activation_fn=nn.ReLU(inplace=True)): super(InputBlock,self).__init__() self.conv = nn.Conv2d( 3,kernel_size=kernel_size,stride=2,padding=padding,bias=False) self.bn = nn.BatchNorm2d(num_init_features,eps=0.001) self.act = activation_fn self.pool = nn.MaxPool2d(kernel_size=3,padding=1) def forward(self,x): x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.pool(x) return x class DualPathBlock(nn.Module): def __init__( self,num_1x1_a,num_3x3_b,num_1x1_c,inc,groups,block_type='normal',b=False): super(DualPathBlock,self).__init__() self.num_1x1_c = num_1x1_c self.inc = inc self.b = b if block_type is 'proj': self.key_stride = 1 self.has_proj = True elif block_type is 'down': self.key_stride = 2 self.has_proj = True else: assert block_type is 'normal' self.key_stride = 1 self.has_proj = False if self.has_proj: # Using different member names here to allow easier parameter key matching for conversion if self.key_stride == 2: self.c1x1_w_s2 = BnActConv2d( in_chs=in_chs,out_chs=num_1x1_c + 2 * inc,kernel_size=1,stride=2) else: self.c1x1_w_s1 = BnActConv2d( in_chs=in_chs,stride=1) self.c1x1_a = BnActConv2d(in_chs=in_chs,out_chs=num_1x1_a,stride=1) self.c3x3_b = BnActConv2d( in_chs=num_1x1_a,out_chs=num_3x3_b,kernel_size=3,stride=self.key_stride,padding=1,groups=groups) if b: self.c1x1_c = CatBnAct(in_chs=num_3x3_b) self.c1x1_c1 = nn.Conv2d(num_3x3_b,bias=False) self.c1x1_c2 = nn.Conv2d(num_3x3_b,bias=False) else: self.c1x1_c = BnActConv2d(in_chs=num_3x3_b,out_chs=num_1x1_c + inc,stride=1) def forward(self,x): x_in = torch.cat(x,tuple) else x if self.has_proj: if self.key_stride == 2: x_s = self.c1x1_w_s2(x_in) else: x_s = self.c1x1_w_s1(x_in) x_s1 = x_s[:,:self.num_1x1_c,:,:] x_s2 = x_s[:,self.num_1x1_c:,:] else: x_s1 = x[0] x_s2 = x[1] x_in = self.c1x1_a(x_in) x_in = self.c3x3_b(x_in) if self.b: x_in = self.c1x1_c(x_in) out1 = self.c1x1_c1(x_in) out2 = self.c1x1_c2(x_in) else: x_in = self.c1x1_c(x_in) out1 = x_in[:,:] out2 = x_in[:,:] resid = x_s1 + out1 dense = torch.cat([x_s2,out2],dim=1) return resid,dense class dpn(nn.Module): def __init__(self,small=False,num_init_features=64,k_r=96,groups=32,b=False,k_sec=(3,4,20,3),inc_sec=(16,32,24,128),num_classes=1000,test_time_pool=False): super(dpn,self).__init__() self.test_time_pool = test_time_pool self.b = b bw_factor = 1 if small else 4 blocks = OrderedDict() # conv1 if small: blocks['conv1_1'] = InputBlock(num_init_features,padding=1) else: blocks['conv1_1'] = InputBlock(num_init_features,padding=3) # conv2 bw = 64 * bw_factor inc = inc_sec[0] r = (k_r * bw) // (64 * bw_factor) blocks['conv2_1'] = DualPathBlock(num_init_features,r,bw,'proj',b) in_chs = bw + 3 * inc for i in range(2,k_sec[0] + 1): blocks['conv2_' + str(i)] = DualPathBlock(in_chs,'normal',b) in_chs += inc # conv3 bw = 128 * bw_factor inc = inc_sec[1] r = (k_r * bw) // (64 * bw_factor) blocks['conv3_1'] = DualPathBlock(in_chs,'down',k_sec[1] + 1): blocks['conv3_' + str(i)] = DualPathBlock(in_chs,b) in_chs += inc # conv4 bw = 256 * bw_factor inc = inc_sec[2] r = (k_r * bw) // (64 * bw_factor) blocks['conv4_1'] = DualPathBlock(in_chs,k_sec[2] + 1): blocks['conv4_' + str(i)] = DualPathBlock(in_chs,b) in_chs += inc # conv5 bw = 512 * bw_factor inc = inc_sec[3] r = (k_r * bw) // (64 * bw_factor) blocks['conv5_1'] = DualPathBlock(in_chs,k_sec[3] + 1): blocks['conv5_' + str(i)] = DualPathBlock(in_chs,b) in_chs += inc blocks['conv5_bn_ac'] = CatBnAct(in_chs) self.features = nn.Sequential(blocks) # Using 1x1 conv for the FC layer to allow the extra pooling scheme self.last_linear = nn.Conv2d(in_chs,num_classes,bias=True) def logits(self,features): if not self.training and self.test_time_pool: x = F.avg_pool2d(features,stride=1) out = self.last_linear(x) # The extra test time pool should be pooling an img_size//32 - 6 size patch out = adaptive_avgmax_pool2d(out,pool_type='avgmax') else: x = adaptive_avgmax_pool2d(features,pool_type='avg') out = self.last_linear(x) return out.view(out.size(0),-1) def forward(self,input): x = self.features(input) x = self.logits(x) return x """ PyTorch selectable adaptive pooling Adaptive pooling with the ability to select the type of pooling from: * 'avg' - Average pooling * 'max' - Max pooling * 'avgmax' - Sum of average and max pooling re-scaled by 0.5 * 'avgmaxc' - Concatenation of average and max pooling along feature dim,doubles feature dim Both a functional and a nn.Module version of the pooling is provided. """ def pooling_factor(pool_type='avg'): return 2 if pool_type == 'avgmaxc' else 1 def adaptive_avgmax_pool2d(x,pool_type='avg',count_include_pad=False): """Selectable global pooling function with dynamic input kernel size """ if pool_type == 'avgmaxc': x = torch.cat([ F.avg_pool2d( x,kernel_size=(x.size(2),x.size(3)),count_include_pad=count_include_pad),F.max_pool2d(x,padding=padding) ],dim=1) elif pool_type == 'avgmax': x_avg = F.avg_pool2d( x,count_include_pad=count_include_pad) x_max = F.max_pool2d(x,padding=padding) x = 0.5 * (x_avg + x_max) elif pool_type == 'max': x = F.max_pool2d(x,padding=padding) else: if pool_type != 'avg': print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type) x = F.avg_pool2d( x,count_include_pad=count_include_pad) return x class AdaptiveAvgMaxPool2d(torch.nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self,output_size=1,pool_type='avg'): super(AdaptiveAvgMaxPool2d,self).__init__() self.output_size = output_size self.pool_type = pool_type if pool_type == 'avgmaxc' or pool_type == 'avgmax': self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size),nn.AdaptiveMaxPool2d(output_size)]) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type) self.pool = nn.AdaptiveAvgPool2d(output_size) def forward(self,x): if self.pool_type == 'avgmaxc': x = torch.cat([p(x) for p in self.pool],dim=1) elif self.pool_type == 'avgmax': x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]),0).squeeze(dim=0) else: x = self.pool(x) return x def factor(self): return pooling_factor(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' \ + 'output_size=' + str(self.output_size) \ + ',pool_type=' + self.pool_type + ')'
以上这篇dpn网络的pytorch实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
原文链接:/python/535013.html