关于ResNeXt网络的pytorch实现

此处需要pip install pretrainedmodels

"""
Finetuning Torchvision Models

"""

from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets,models,transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
import pretrainedmodels.models.ResNeXt as ResNeXt

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)

# Top level data directory. Here we assume the format of the directory conforms
#  to the ImageFolder structure
#data_dir = "./data/hymenoptera_data"
data_dir = "/media/dell/dell/data/13/"
# Models to choose from [resnet,AlexNet,vgg,squeezenet,densenet,inception]
model_name = "ResNeXt"

# Number of classes in the dataset
num_classes = 171

# Batch size for training (change depending on how much memory you have)
batch_size = 16

# Number of epochs to train for
num_epochs = 1000

# Flag for feature extracting. When False,we finetune the whole model,#  when True we only update the reshaped layer params
feature_extract = False

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch seresnet')
parser.add_argument('--outf',default='/home/dell/Desktop/zhou/train7',help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net',default='/home/dell/Desktop/zhou/train7/ResNeXt.pth',help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()

def train_model(model,DataLoaders,criterion,optimizer,num_epochs=25,is_inception=False):
#def train_model(model,scheduler,is_inception=False):
  since = time.time()

  val_acc_history = []

  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training,ResNeXt!") # 定义遍历数据集的次数
  with open("/home/dell/Desktop/zhou/train7/acc.txt","w") as f1:
    with open("/home/dell/Desktop/zhou/train7/log.txt","w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1,num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train','val']:
          if phase == 'train':
            #scheduler.step()
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode

          running_loss = 0.0
          running_corrects = 0

          # Iterate over data.
          for inputs,labels in DataLoaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              # Get model outputs and calculate loss
              # Special case for inception because in training it has an auxiliary output. In train
              #  mode we calculate the loss by summing the final output and the auxiliary output
              #  but in testing we only consider the final output.
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs,aux_outputs = model(inputs)
                loss1 = criterion(outputs,labels)
                loss2 = criterion(aux_outputs,labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs,labels)

              _,preds = torch.max(outputs,1)

              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()

            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(DataLoaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(DataLoaders[phase].dataset)

          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_acc))
          f2.write('\n')
          f2.flush()
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%5==0:
              #print('Saving model......')
              torch.save(model.state_dict(),'%s/inception_%03d.pth' % (args.outf,epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1,100*epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt","w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60,time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model,val_acc_history

def set_parameter_requires_grad(model,feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False

def initialize_model(model_name,num_classes,feature_extract,use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft,feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "AlexNet":
    """ AlexNet
    """
    model_ft = models.AlexNet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft,feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft,feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512,kernel_size=(1,1),stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft,feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "ResNeXt":
    """ ResNeXt
    Be careful,expects (3,224,224) sized images
    """
    model_ft = ResNeXt.ResNeXt101_64x4d(num_classes=1000,pretrained='imagenet')
    set_parameter_requires_grad(model_ft,feature_extract)
    model_ft.last_linear = nn.Linear(2048,num_classes)
    #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'
    #model_ft.load_state_dict(torch.load(pre))
    input_size = 224

  else:
    print("Invalid model name,exiting...")
    exit()

  return model_ft,input_size

# Initialize the model for this run
model_ft,input_size = initialize_model(model_name,use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 

data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
  ]),'val': transforms.Compose([
    transforms.Resize(input_size),transforms.CenterCrop(input_size),}

print("Initializing Datasets and DataLoaders...")

# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,x),data_transforms[x]) for x in ['train','val']}
# Create training and validation DataLoaders
DataLoaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size,shuffle=True,num_workers=4) for x in ['train','val']}

# Detect if we have a GPU available
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

#we='/home/dell/Desktop/dj/inception_050.pth'
#model_ft.load_state_dict(torch.load(we))#diaoyong
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update,lr=0.01,momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft,step_size=30,gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
print(model_ft)
# Train and evaluate
model_ft,hist = train_model(model_ft,DataLoaders_dict,optimizer_ft,num_epochs=num_epochs,is_inception=False)

以上这篇关于ResNeXt网络的pytorch实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

相关文章

在这篇文章中,我们深入学习了XPath作为一种常见的网络爬虫技巧。XPath是一种用于定位和选择XML文档中特...
祝福大家龙年快乐!愿你们的生活像龙一样充满力量和勇气,愿你们在新的一年里,追逐梦想,勇往直前,不...
今天在爬虫实战中,除了正常爬取网页数据外,我们还添加了一个下载功能,主要任务是爬取小说并将其下载...
完美收官,本文是爬虫实战的最后一章了,所以尽管本文着重呈现爬虫实战,但其中有一大部分内容专注于数...
JSON是一种流行的数据传输格式,Python中有多种处理JSON的方式。官方的json库是最常用的,它提供了简单...
独立样本T检验适用于比较两组独立样本的均值差异,而配对T检验则适用于比较同一组样本在不同条件下的均...