30个Python技巧

对python这个高级语言感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容

列表按难度排序,常用的语言特征和技巧放在前面。

1.30 最大最小元素 (heapq.nlargest和heapq.nsmallest)

>>> a = [random.randint(0,100) for __ in xrange(100)]

>>> heapq.nsmallest(5,a)

[3,3,5,6,8]

>>> heapq.nlargest(5,a)

[100,100,99,98,98]

1.31 笛卡尔乘积 (itertools.product)

>>> for p in itertools.product([1,2,3],[4,5]):

(1,4)

(1,5)

(2,4)

(2,5)

(3,4)

(3,5)

>>> for p in itertools.product([0,1],repeat=4):

... print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1.32 组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1,4,5],3):

... print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1,2):

... print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

1.33 排序 (itertools.permutations)

>>> for p in itertools.permutations([1,4]):

... print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

1.34 链接的迭代 (itertools.chain)

>>> a = [1,4]

>>> for p in itertools.chain(itertools.combinations(a,2),itertools.combinations(a,3)):

... print p

...

(1,2)

(1,3)

(1,3)

(2,4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a,n) for n in range(len(a) + 1))

... print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1,4)

1.35 按给定值分组行 (itertools.groupby)

>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv','r') as infile:

... data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

 

>>> print_data(data)

young myope no reduced none

young myope no normal soft

young myope yes reduced none

young myope yes normal hard

young hypermetrope no reduced none

young hypermetrope no normal soft

young hypermetrope yes reduced none

young hypermetrope yes normal hard

pre-presbyopic myope no reduced none

pre-presbyopic myope no normal soft

pre-presbyopic myope yes reduced none

pre-presbyopic myope yes normal hard

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope no normal soft

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic myope yes normal hard

presbyopic hypermetrope no reduced none

presbyopic hypermetrope no normal soft

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

 

>>> data.sort(key=itemgetter(-1))

>>> for value,group in itertools.groupby(data,lambda r: r[-1]):

... print '-----------'

... print 'Group: ' + value

... print_data(group)

...

-----------

Group: hard

young myope yes normal hard

young hypermetrope yes normal hard

pre-presbyopic myope yes normal hard

presbyopic myope yes normal hard

-----------

Group: none

young myope no reduced none

young myope yes reduced none

young hypermetrope no reduced none

young hypermetrope yes reduced none

pre-presbyopic myope no reduced none

pre-presbyopic myope yes reduced none

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic hypermetrope no reduced none

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

-----------

Group: soft

young myope no normal soft

young hypermetrope no normal soft

pre-presbyopic myope no normal soft

pre-presbyopic hypermetrope no normal soft

presbyopic hypermetrope no normal soft

相关文章

在这篇文章中,我们深入学习了XPath作为一种常见的网络爬虫技巧。XPath是一种用于定位和选择XML文档中特...
祝福大家龙年快乐!愿你们的生活像龙一样充满力量和勇气,愿你们在新的一年里,追逐梦想,勇往直前,不...
今天在爬虫实战中,除了正常爬取网页数据外,我们还添加了一个下载功能,主要任务是爬取小说并将其下载...
完美收官,本文是爬虫实战的最后一章了,所以尽管本文着重呈现爬虫实战,但其中有一大部分内容专注于数...
JSON是一种流行的数据传输格式,Python中有多种处理JSON的方式。官方的json库是最常用的,它提供了简单...
独立样本T检验适用于比较两组独立样本的均值差异,而配对T检验则适用于比较同一组样本在不同条件下的均...