用过unittest的朋友,肯定知道可以借助DDT实现参数化。用过JMeter的朋友,肯定知道JMeter自带了4种参数化方式(见参考资料)。pytest同样支持参数化,而且很简单很实用。
语法
在《pytest封神之路第三步 精通fixture》和《pytest封神之路第四步 内置和自定义marker》两篇文章中,都提到了pytest参数化。那么本文就趁着热乎,赶紧聊一聊pytest的参数化是怎么玩的。
@pytest.mark.parametrize
@pytest.mark.parametrize("test_input,expected",[("3+5",8),("2+4",6),("6*9",42)])
def test_eval(test_input,expected):
assert eval(test_input) == expected
-
可以自定义变量,test_input对应的值是"3+5" "2+4" "6*9",expected对应的值是8 6 42,多个变量用tuple,多个tuple用list
-
参数化的变量是引用而非复制,意味着如果值是list或dict,改变值会影响后续的test
-
重叠产生笛卡尔积
import pytest @pytest.mark.parametrize("x",[0,1]) @pytest.mark.parametrize("y",[2,3]) def test_foo(x,y): pass
@pytest.fixture()
@pytest.fixture(scope="module",params=["smtp.gmail.com","mail.python.org"])
def smtp_connection(request):
smtp_connection = smtplib.SMTP(request.param,587,timeout=5)
-
只能使用request.param来引用
-
参数化生成的test带有ID,可以使用
-k
来筛选执行。默认是根据函数名[参数名]
来的,可以使用ids来定义// list @pytest.fixture(params=[0,1],ids=["spam","ham"]) // function @pytest.fixture(params=[0,ids=idfn)
使用
--collect-only
命令行参数可以看到生成的IDs。
参数添加marker
我们知道了参数化后会生成多个tests,如果有些test需要marker,可以用pytest.param来添加
marker方式
# content of test_expectation.py
import pytest
@pytest.mark.parametrize(
"test_input,pytest.param("6*9",42,marks=pytest.mark.xfail)],)
def test_eval(test_input,expected):
assert eval(test_input) == expected
fixture方式
# content of test_fixture_marks.py
import pytest
@pytest.fixture(params=[0,1,pytest.param(2,marks=pytest.mark.skip)])
def data_set(request):
return request.param
def test_data(data_set):
pass
pytest_generate_tests
用来自定义参数化方案。使用到了hook,hook的知识我会写在《pytest hook》中,欢迎关注公众号dongfanger获取最新文章。
# content of conf.py
def pytest_generate_tests(Metafunc):
if "test_input" in Metafunc.fixturenames:
Metafunc.parametrize("test_input",1])
# content of test.py
def test(test_input):
assert test_input == 0
- 定义在conftest.py文件中
- Metafunc有5个属性,fixturenames,module,config,function,cls
- Metafunc.parametrize() 用来实现参数化
- 多个Metafunc.parametrize() 的参数名不能重复,否则会报错
参数化误区
在讲示例之前,先简单分享我的菜鸡行为。假设我们现在需要对50个接口测试,验证某一角色的用户访问这些接口会返回403。我的做法是,把接口请求全部参数化了,test函数里面只有断言,伪代码大致如下
def api():
params = []
def func():
return request()
params.append(func)
...
@pytest.mark.parametrize('req',api())
def test():
res = req()
assert res.status_code == 403
这样参数化以后,会产生50个tests,如果断言失败了,会单独标记为Failed,不影响其他test结果。咋一看还行,但是有个问题,在回归的时候,可能只需要验证其中部分接口,就没有办法灵活的调整,必须全部跑一遍才行。这是一个相对错误的示范,至于正确的应该怎么写,相信每个人心中都有一个答案,能解决问题就是ok的。我想表达的是,参数化要适当,不要滥用,最好只对测试数据做参数化。
实践
本文的重点来了,参数化的语法比较简单,实际应用是关键。这部分通过11个例子,来实践一下。示例覆盖的知识点有点多,建议留大段时间细看。
1.使用hook添加命令行参数--all,"param1"是参数名,带--all参数时是range(5) == [0,2,3,4],生成5个tests。不带参数时是range(2)。
# content of test_compute.py
def test_compute(param1):
assert param1 < 4
# content of conftest.py
def pytest_addoption(parser):
parser.addoption("--all",action="store_true",help="run all combinations")
def pytest_generate_tests(Metafunc):
if "param1" in Metafunc.fixturenames:
if Metafunc.config.getoption("all"):
end = 5
else:
end = 2
Metafunc.parametrize("param1",range(end))
2.testdata是测试数据,包括2组。test_timedistance_v0不带ids。test_timedistance_v1带list格式的ids。test_timedistance_v2的ids为函数。test_timedistance_v3使用pytest.param同时定义测试数据和id。
# content of test_time.py
from datetime import datetime,timedelta
import pytest
testdata = [
(datetime(2001,12,12),datetime(2001,11),timedelta(1)),(datetime(2001,timedelta(-1)),]
@pytest.mark.parametrize("a,b,testdata)
def test_timedistance_v0(a,expected):
diff = a - b
assert diff == expected
@pytest.mark.parametrize("a,testdata,ids=["forward","backward"])
def test_timedistance_v1(a,expected):
diff = a - b
assert diff == expected
def idfn(val):
if isinstance(val,(datetime,)):
# note this wouldn't show any hours/minutes/seconds
return val.strftime("%Y%m%d")
@pytest.mark.parametrize("a,ids=idfn)
def test_timedistance_v2(a,expected):
diff = a - b
assert diff == expected
@pytest.mark.parametrize(
"a,[
pytest.param(
datetime(2001,timedelta(1),id="forward"
),pytest.param(
datetime(2001,timedelta(-1),id="backward"
),],)
def test_timedistance_v3(a,expected):
diff = a - b
assert diff == expected
3.兼容unittest的testscenarios
# content of test_scenarios.py
def pytest_generate_tests(Metafunc):
idlist = []
argvalues = []
for scenario in Metafunc.cls.scenarios:
idlist.append(scenario[0])
items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append([x[1] for x in items])
Metafunc.parametrize(argnames,argvalues,ids=idlist,scope="class")
scenario1 = ("basic",{"attribute": "value"})
scenario2 = ("advanced",{"attribute": "value2"})
class TestSampleWithScenarios:
scenarios = [scenario1,scenario2]
def test_demo1(self,attribute):
assert isinstance(attribute,str)
def test_demo2(self,str)
4.初始化数据库连接
# content of test_backends.py
import pytest
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
pytest.fail("deliberately failing for demo purposes")
# content of conftest.py
import pytest
def pytest_generate_tests(Metafunc):
if "db" in Metafunc.fixturenames:
Metafunc.parametrize("db",["d1","d2"],indirect=True)
class DB1:
"one database object"
class DB2:
"alternative database object"
@pytest.fixture
def db(request):
if request.param == "d1":
return DB1()
elif request.param == "d2":
return DB2()
else:
raise ValueError("invalid internal test config")
5.如果不加indirect=True,会生成2个test,fixt的值分别是"a"和"b"。如果加了indirect=True,会先执行fixture,fixt的值分别是"aaa"和"bbb"。indirect=True结合fixture可以在生成test前,对参数变量额外处理。
import pytest
@pytest.fixture
def fixt(request):
return request.param * 3
@pytest.mark.parametrize("fixt",["a","b"],indirect=True)
def test_indirect(fixt):
assert len(fixt) == 3
6.多个参数时,indirect赋值list可以指定某些变量应用fixture,没有指定的保持原值。
# content of test_indirect_list.py
import pytest
@pytest.fixture(scope="function")
def x(request):
return request.param * 3
@pytest.fixture(scope="function")
def y(request):
return request.param * 2
@pytest.mark.parametrize("x,y",[("a","b")],indirect=["x"])
def test_indirect(x,y):
assert x == "aaa"
assert y == "b"
7.兼容unittest参数化
# content of ./test_parametrize.py
import pytest
def pytest_generate_tests(Metafunc):
# called once per each test function
funcarglist = Metafunc.cls.params[Metafunc.function.__name__]
argnames = sorted(funcarglist[0])
Metafunc.parametrize(
argnames,[[funcargs[name] for name in argnames] for funcargs in funcarglist]
)
class TestClass:
# a map specifying multiple argument sets for a test method
params = {
"test_equals": [dict(a=1,b=2),dict(a=3,b=3)],"test_zerodivision": [dict(a=1,b=0)],}
def test_equals(self,a,b):
assert a == b
def test_zerodivision(self,b):
with pytest.raises(ZeroDivisionError):
a / b
8.在不同python解释器之间测试对象序列化。python1把对象pickle-dump到文件。python2从文件中pickle-load对象。
"""
module containing a parametrized tests testing cross-python
serialization via the pickle module.
"""
import shutil
import subprocess
import textwrap
import pytest
pythonlist = ["python3.5","python3.6","python3.7"]
@pytest.fixture(params=pythonlist)
def python1(request,tmpdir):
picklefile = tmpdir.join("data.pickle")
return Python(request.param,picklefile)
@pytest.fixture(params=pythonlist)
def python2(request,python1):
return Python(request.param,python1.picklefile)
class Python:
def __init__(self,version,picklefile):
self.pythonpath = shutil.which(version)
if not self.pythonpath:
pytest.skip("{!r} not found".format(version))
self.picklefile = picklefile
def dumps(self,obj):
dumpfile = self.picklefile.dirpath("dump.py")
dumpfile.write(
textwrap.dedent(
r"""
import pickle
f = open({!r},'wb')
s = pickle.dump({!r},f,protocol=2)
f.close()
""".format(
str(self.picklefile),obj
)
)
)
subprocess.check_call((self.pythonpath,str(dumpfile)))
def load_and_is_true(self,expression):
loadfile = self.picklefile.dirpath("load.py")
loadfile.write(
textwrap.dedent(
r"""
import pickle
f = open({!r},'rb')
obj = pickle.load(f)
f.close()
res = eval({!r})
if not res:
raise SystemExit(1)
""".format(
str(self.picklefile),expression
)
)
)
print(loadfile)
subprocess.check_call((self.pythonpath,str(loadfile)))
@pytest.mark.parametrize("obj",[42,{},{1: 3}])
def test_basic_objects(python1,python2,obj):
python1.dumps(obj)
python2.load_and_is_true("obj == {}".format(obj))
9.假设有个API,basemod是原始版本,optmod是优化版本,验证二者结果一致。
# content of conftest.py
import pytest
@pytest.fixture(scope="session")
def basemod(request):
return pytest.importorskip("base")
@pytest.fixture(scope="session",params=["opt1","opt2"])
def optmod(request):
return pytest.importorskip(request.param)
# content of base.py
def func1():
return 1
# content of opt1.py
def func1():
return 1.0001
# content of test_module.py
def test_func1(basemod,optmod):
assert round(basemod.func1(),3) == round(optmod.func1(),3)
10.使用pytest.param添加marker和id。
# content of test_pytest_param_example.py
import pytest
@pytest.mark.parametrize(
"test_input,[
("3+5",pytest.param("1+7",8,marks=pytest.mark.basic),pytest.param("2+4",6,marks=pytest.mark.basic,id="basic_2+4"),pytest.param(
"6*9",marks=[pytest.mark.basic,pytest.mark.xfail],id="basic_6*9"
),expected):
assert eval(test_input) == expected
11.使用pytest.raises让部分test抛出Error。
from contextlib import contextmanager
import pytest
// 3.7+ from contextlib import nullcontext as does_not_raise
@contextmanager
def does_not_raise():
yield
@pytest.mark.parametrize(
"example_input,expectation",[
(3,does_not_raise()),(2,(1,(0,pytest.raises(ZeroDivisionError)),)
def test_division(example_input,expectation):
"""Test how much I know division."""
with expectation:
assert (6 / example_input) is not None
简要回顾
本文先讲了参数化的语法,包括marker,fixture,hook方式,以及如何给参数添加marker,然后重点列举了几个实战示例。参数化用好了能节省编码,达到事半功倍的效果。
参考资料
docs-pytest-org-en-stable
JMeter4种参数化方式,请阅读公众号《三道题加油站 (2)》
原文链接:/pytest/992422.html