LRU 算法

LRU 最近最少使用算法,LRU算法主要用于缓存淘汰。主要目的就是把最近最少使用的数据移除内存,以加载其他数据。

原理

添加元素时,放到链表头
缓存命中,将元素移动到链表头
缓存满了之后,将链表尾的元素删除

LRU算法实现

  • 可以用一个双向链表保存数据
  • 使用hash实现O(1)的访问

groupcache中LRU算法实现(Go语言)
https://github.com/golang/groupcache/blob/master/lru/lru.go

源码简单注释:

package lru

import "container/list"

// Cache 结构体,定义lru cache 不是线程安全的
type Cache struct {
    // 数目限制,0是无限制 
    MaxEntries int

    // 删除时,可以添加可选的回调函数
    OnEvicted func(key Key,value interface{})

    ll    *list.List // 使用链表保存数据
    cache map[interface{}]*list.Element  // map 
}

// Key 是任何可以比较的值  http://golang.org/ref/spec#Comparison_operators
type Key interface{}

type entry struct {
    key   Key
    value interface{}
}

// 创建新的cache 对象
func New(maxEntries int) *Cache {
    return &Cache{
        MaxEntries: maxEntries,ll:         list.New(),cache:      make(map[interface{}]*list.Element),}
}

// 添加新的值到cache里
func (c *Cache) Add(key Key,value interface{}) {
    if c.cache == nil {
        c.cache = make(map[interface{}]*list.Element)
        c.ll = list.New()
    }
    if ee,ok := c.cache[key]; ok {
                // 缓存命中移动到链表的头部
        c.ll.MoveToFront(ee)
        ee.Value.(*entry).value = value
        return
    }
        // 添加数据到链表头部
    ele := c.ll.PushFront(&entry{key,value})
    c.cache[key] = ele
    if c.MaxEntries != 0 && c.ll.Len() > c.MaxEntries {
        // 满了删除最后访问的元素
        c.RemoveOldest()
    }
}

// 从cache里获取值.
func (c *Cache) Get(key Key) (value interface{},ok bool) {
    if c.cache == nil {
        return
    }
    if ele,hit := c.cache[key]; hit {
        // 缓存命中,将命中元素移动到链表头
        c.ll.MoveToFront(ele)
        return ele.Value.(*entry).value,true
    }
    return
}

// 删除指定key的元素
func (c *Cache) Remove(key Key) {
    if c.cache == nil {
        return
    }
    if ele,hit := c.cache[key]; hit {
        c.removeElement(ele)
    }
}

// 删除最后访问的元素
func (c *Cache) RemoveOldest() {
    if c.cache == nil {
        return
    }
    ele := c.ll.Back()
    if ele != nil {
        c.removeElement(ele)
    }
}

func (c *Cache) removeElement(e *list.Element) {
    c.ll.Remove(e)
    kv := e.Value.(*entry)
    delete(c.cache,kv.key)
    if c.OnEvicted != nil {
        c.OnEvicted(kv.key,kv.value)
    }
}

// cache 缓存数
func (c *Cache) Len() int {
    if c.cache == nil {
        return 0
    }
    return c.ll.Len()
}

相关文章

程序目录结构 简单实现,用户登录后返回一个jwt的token,下次请求带上token请求用户信息接口并返回信息...
本篇博客的主要内容是用go写一个简单的Proof-of-Work共识机制,不涉及到网络通信环节,只是一个本地的简...
简介 默克尔树(MerkleTree)是一种典型的二叉树结构,其主要特点为: 最下面的叶节点包含存储数据或其...
接下来学习并发编程, 并发编程是go语言最有特色的地方, go对并发编程是原生支持. goroutine是go中最近本...
先普及一下, 什么是广度优先搜索 广度优先搜索类似于树的层次遍历。从图中的某一顶点出发,遍历每一个顶...
第一天: 接口的定义和实现 第二天: 一. go语言是面向接口编程. 在学习继承的时候说过, go语言只有封装,...