golang手动管理内存

作者:JohnGraham-Cumming.原文点击此处。翻译:Lubia Yang

前些天我介绍了我们对Lua的使用,implementournewWebApplicationFirewall.

另一种在CloudFlare(作者的公司)变得非常流行的语言是Golang。在过去,我写了一篇howweuseGo来介绍类似Railgun的网络服务的编写。

用Golang这样带GC的语言编写长期运行的网络服务有一个很大的挑战,那就是内存管理。

为了理解Golang的内存管理有必要对run-time源码进行深挖。有两个进程区分应用程序不再使用的内存,当它们看起来不会再使用,就把它们归还到操作系统(在Golang源码里称为scavenging)。

这里有一个简单的程序制造了大量的垃圾(garbage),每秒钟创建一个5,000,000到10,000bytes的数组。程序维持了20个这样的数组,其他的则被丢弃。程序这样设计是为了模拟一种非常常见的情况:随着时间的推移,程序中的不同部分申请了内存,有一些被保留,但大部分不再重复使用。在Go语言网络编程中,用goroutines来处理网络连接和网络请求时(networkconnectionsorrequests),通常goroutines都会申请一块内存(比如slice来存储收到的数据)然后就不再使用它们了。随着时间的推移,会有大量的内存被网络连接(networkconnections)使用,连接累积的垃圾comeandgone

package main

import (  
    "fmt"  
    "math/rand"  
    "runtime"  
    "time"
)  

func makeBuffer() []byte {  
    return make([]byte,rand.Intn(5000000)+5000000)  
}

func main() {  
    pool := make([][]byte,20)

    var m runtime.MemStats  
    makes := 0  
    for {  
        b := makeBuffer()
        makes += 1
        i := rand.Intn(len(pool))
        pool[i] = b

        time.Sleep(time.Second)

        bytes := 0

        for i := 0; i < len(pool); i++ {
            if pool[i] != nil {
                bytes += len(pool[i])
            }
        }

        runtime.ReadMemStats(&m)
        fmt.Printf("%d,%d,%d\n",m.HeapSys,bytes,m.HeapAlloc,m.HeapIdle,m.HeapReleased,makes)
    }
}
程序使用 runtime.ReadMemStats函数获取堆的使用信息。它打印了四个值,

HeapSys:程序向应用程序申请的内存

HeapAlloc:堆上目前分配的内存

HeapIdle:堆上目前没有使用的内存

HeapReleased:回收到操作系统的内存

@H_502_25@

GC在Golang中运行的很频繁(参见GOGC环境变量(GOGCenvironmentvariable)来理解怎样控制垃圾回收操作),因此在运行中由于一些内存被标记为”未使用“,堆上的内存大小会发生变化:这会导致HeapAlloc和HeapIdle发生变化。Golang中的scavenger会释放那些超过5分钟仍然没有再使用的内存,因此HeapReleased不会经常变化。

下面这张图是上面的程序运行了10分钟以后的情况:


(在这张和后续的图中,左轴以是以byte为单位的内存大小,右轴是程序执行次数)

红线展示了pool中bytebuffers的数量。20个buffers很快达到150,000bytes。最上方的蓝色线表示程序从操作系统申请的内存。稳定在375,000bytes。因此程序申请了2.5倍它所需的空间!

当GC发生时,HeapIdle和HeapAlloc发生跳变。橘色的线是makeBuffer()发送的次数

这种过度的内存申请是有GC的程序的通病,参见这篇paper

QuantifyingthePerformanceofGarbageCollectionvs.ExplicitMemoryManagement

程序不断执行,idlememory(即HeapIdle)会被重用,但很少归还到操作系统。


解决此问题的一个办法是在程序中手动进行内存管理。例如,

程序可以这样重写:

package main

import (
	"fmt"
	"math/rand"
	"runtime"
	"time"
)

func makeBuffer() []byte {
	return make([]byte,rand.Intn(5000000)+5000000)
}

func main() {
	pool := make([][]byte,20)

	buffer := make(chan []byte,5)

	var m runtime.MemStats
	makes := 0
	for {
		var b []byte
		select {
		case b = <-buffer:
		default:
			makes += 1
			b = makeBuffer()
		}

		i := rand.Intn(len(pool))
		if pool[i] != nil {
			select {
			case buffer <- pool[i]:
				pool[i] = nil
			default:
			}
		}

		pool[i] = b

		time.Sleep(time.Second)

		bytes := 0
		for i := 0; i < len(pool); i++ {
			if pool[i] != nil {
				bytes += len(pool[i])
			}
		}

		runtime.ReadMemStats(&m)
		fmt.Printf("%d,makes)
	}
}


这张图展示了完全不同的情况。实际使用的buffer几乎等于从操作系统中申请的内存。同时GC几乎没有工作可做。堆上只有很少的HeapIdle最终需要归还到操作系统。

这段程序中内存回收机制的关键操作就是一个缓冲的channel——buffer,在上面的代码中,buffer是一个可以存储5个[]byteslice的容器。当程序需要空间时,首先会使用select从buffer中读取:

select{

caseb=<-buffer:

default:

makes+=1

b=makeBuffer()

}

@H_502_25@

这永远不会阻塞因为如果channel中有数据,就会被读出,如果channel是空的(意味着接收会阻塞),则会创建一个。

使用类似的非阻塞机制将slice回收到buffer:

select{

casebuffer<-pool[i]:

pool[i]=nil

default:

}

@H_502_25@

如果buffer这个channel满了,则以上的写入过程会阻塞,这种情况下default触发。这种简单的机制可以用于安全的创建一个共享池,甚至可通过channel传递实现多个goroutines之间的完美、安全共享。

在我们的实际项目中运用了相似的技术,实际使用中(简单版本)的回收器(recycler)展示在下面,有一个goroutine处理buffers的构造并在多个goroutine之间共享。get(获取一个新buffer)和give(回收一个buffer到pool)这两个channel被所有goroutines使用。

回收器对收回的buffer保持连接,并定期的丢弃那些过于陈旧可能不会再使用的buffer(在示例代码中这个周期是一分钟)。这让程序可以自动应对爆发性的buffers需求。

package main

import (
    "container/list"
    "fmt"
    "math/rand"
    "runtime"
    "time"
)

var makes int
var frees int

func makeBuffer() []byte {
    makes += 1
    return make([]byte,rand.Intn(5000000)+5000000)
}

type queued struct {
    when time.Time
    slice []byte
}

func makeRecycler() (get,give chan []byte) {
    get = make(chan []byte)
    give = make(chan []byte)

    go func() {
        q := new(list.List)
        for {
            if q.Len() == 0 {
                q.PushFront(queued{when: time.Now(),slice: makeBuffer()})
            }

            e := q.Front()

            timeout := time.NewTimer(time.Minute)
            select {
            case b := <-give:
                timeout.Stop()
                q.PushFront(queued{when: time.Now(),slice: b})

           case get <- e.Value.(queued).slice:
               timeout.Stop()
               q.Remove(e)

           case <-timeout.C:
               e := q.Front()
               for e != nil {
                   n := e.Next()
                   if time.Since(e.Value.(queued).when) > time.Minute {
                       q.Remove(e)
                       e.Value = nil
                   }
                   e = n
               }
           }
       }

    }()

    return
}

func main() {
    pool := make([][]byte,20)

    get,give := makeRecycler()

    var m runtime.MemStats
    for {
        b := <-get
        i := rand.Intn(len(pool))
        if pool[i] != nil {
            give <- pool[i]
        }

        pool[i] = b

        time.Sleep(time.Second)

        bytes := 0
        for i := 0; i < len(pool); i++ {
            if pool[i] != nil {
                bytes += len(pool[i])
            }
        }

        runtime.ReadMemStats(&m)
        fmt.Printf("%d,m.HeapAlloc
             m.HeapIdle,makes,frees)
    }
}


执行程序10分钟,图像会类似于第二幅:

这些技术可以用于程序员知道某些内存可以被重用,而不用借助于GC,可以显著的减少程序的内存使用,同时可以使用在其他数据类型而不仅是[]byteslice,任意类型的Gotype(用户定义的或许不行(user-definedornot))都可以用类似的手段回收。

相关文章

程序目录结构 简单实现,用户登录后返回一个jwt的token,下次请求带上token请求用户信息接口并返回信息...
本篇博客的主要内容是用go写一个简单的Proof-of-Work共识机制,不涉及到网络通信环节,只是一个本地的简...
简介 默克尔树(MerkleTree)是一种典型的二叉树结构,其主要特点为: 最下面的叶节点包含存储数据或其...
接下来学习并发编程, 并发编程是go语言最有特色的地方, go对并发编程是原生支持. goroutine是go中最近本...
先普及一下, 什么是广度优先搜索 广度优先搜索类似于树的层次遍历。从图中的某一顶点出发,遍历每一个顶...
第一天: 接口的定义和实现 第二天: 一. go语言是面向接口编程. 在学习继承的时候说过, go语言只有封装,...