哈希表的博客链接:http://www.jb51.cc/article/p-pdvyeclx-wr.html
位图的博客链接:http://www.jb51.cc/article/p-ouvdnatb-wr.html
题目1:
给一个超过100G大小的log file,log中存在着IP地址,设计算法找到出现此数最多的IP地址
1.这里首先想到的是切分,因为呢,100G太大,放不到内存中;
我们可以切分成1000个小文件,每个文件大概就是500M左右的样子;
2.可是,问题来了,如何才可以将相同的IP地址放入同一个文件当中呢?
3.这里就要用到哈希的思想,哈希切分;
每一个IP地址就是一个对应的字符串,我们可以算出key值,然后取余数,余数就表示的是存储的文件号
比如index = key% 1000;余数必定在 0~999,这样我们就可以将相同的IP地址放入同一个文件中啦
然后呢,依次将这些文件装载入内存,统计每个文件出现最多的IP,然后进行比较
即可求解
题目2:
给一个超过100G大小的log file,log中存在着IP地址,设计算法找到TopK的IP地址
1.说到TopK问题,立马想到了堆这个数据结构;
题目中求得是次数最多的前K个,那我们就可以建一个小堆;
2.还是利用到第一道题目,当我们得到第一个文件时,将第一个文件中前K个数据建小堆;
3.然后后面的元素依次和堆顶元素进行比较,如果比堆顶元素的次数多,那么堆顶出堆,该元素入堆
直到所有文件全部读完,留在该堆里面的元素便是TopK个最多的元素
题目3:
给定100亿个整数,设计算法找到只出现一次的整数
首先呢,32个字节所能表示的整数只有42亿多个,100亿个大大超过了42亿,肯定是有重复的;
全部装载到内存?肯定不合适,一个整数4个字节,100亿个整数就是400亿个字节;
由于40亿多的字节 约等于 4G,400亿字节大概就是40G,电脑的内存又有多大呢?
解法1:哈希切分
和前面的题目一样,用哈希切分,将相同的数划分到同一个文件中,然后分别统计各个小文件中出现一次的数据;
解法2:位图变形
1.之前位图是利用每一个比特位来存储数据,我们现在可以多用一个位,也就是两个比特位;
00代表该数没有出现过,01代表出现过一次,10代表出现了两次及以上;
2.当位图统计元素次数时,若没有出现或者出现了一次,则+1;否则不变;
这样我们可以根据位图的比特位来找到出现一次的数了;
3.一个数两个比特位,所有的数也只需要1个G
题目4:
给两个文件,分别有100亿个整数,我们只有1G的内存,如何找到这两个文件之间的交集
解法1:直接比较
首先将两个文件A,B划分成多个小文件A1,A2,A3...B1,B2,B3..,然后依次用一个小文件(如A1),比较B类的所有小文件;
比较完后,再用A2比较B的所有小文件.....
但是,效率实在是太慢了╮(╯▽╰)╭
时间复杂度O(N* N)
解法2:哈希切分
如前面的题目所示,也是划分成多个小文件,但是数字划分到对应的小文件是通过哈希算法来切分的;
这样可以保证相同的数字只出现在A,B相同的编号中;
解法3:利用位图
32位的整数有42亿,可以用500多M的位图来存储;
出现了相同的数字便是出现了交集;
题目5:
1个文件中有100亿个int,用1G内存找到出现次数不超过两次的整数
与题目3类似,可以用哈希切分将这些整数划分到同一个文件当中
也可以用位图的变形,用两个位 00 01 10 11,存储完之后
题目6:
给两个文件,分别有100亿个query(我们可以认为是字符串),只有1G内存,我们如何找到交集;分别给出近似算法和精确算法
query,表示的是查询的意思,也就是一串字符串
该题目类似于第四题
精确算法:哈希切分
将两个文件用相同的字符串哈希算法,求出字符串对应的key值,然后取余,放入需要相同的文件中
近似算法:布隆过滤器
布隆过滤器利用的是位图,我们可以将A文件中的所有整数存入布隆过滤器中,
然后用B文件依次去比较判断是否存在
注意:布隆过滤器可能存在误判,所以是近似算法
题目7:
如何扩展布隆过滤器使之可以支持删除元素的操作
因为布隆过滤器是将一个数对应多个位,很可能存在冲突
在删除的时候,有可能这些位是由于其他数的存在而被置数的,并不是由于该数
所以一般情况下布隆过滤器不支持删除,如果需要删除,就需要增加计数操作
题目8:
如何扩展布隆过滤器使之支持计数操作
由于可以使用计数来使得布隆过滤器支持删除操作,但是由于一个int是4个字节,一个数用位图本需要1个字节,现在要增加4个字节,显然与我们使用位图相违背
因此呢,我们想到用vector来存储计数,然后用字符串哈希算法,转换后的整数作为vector的下标,每次出现即自增;
在删除时,若该位大于0,就可以自减来复位;
题目9:
给上千个文件,每个文件在1k~100M之间。给定n个词,设计算法找出包含他的文件,只利用100K的内存
刚拿到这道题目时,我是懵逼的,因为只有100K的内存,感觉实在太小了;
捋一捋这道题目需要注意的点:
@H_311_301@(1)文件里存储的是不定的单词,不能切分
(2)用一个Info的文件,用来保存N个词语以及文件的其他信息
(5)将内存的缓冲区分成两份,一份用来读取布隆过滤器,一份用来读文件进行比较
(6)读入一个单词时,依次读取布隆过滤器,判断是否存在该词语,若不存在,则读取下一个布隆过滤器,直到所有的布隆过滤器都被读完
题目10:
有一个字典,包含了N个英文单词,现在给出任意个字符串,设计算法找出包含该字符串的所有单词
这里我们要用到一种特殊的数据结构---字典树
字典树是哈希表的一个变种
假设我要查询的单词时hi,那么我只用判断以h打头的子树中是否存在hi中就可以了;
原文链接:/datastructure/382339.html