陈越《数据结构》第三讲 树(上)

前端之家收集整理的这篇文章主要介绍了陈越《数据结构》第三讲 树(上)前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

3.1 树与树的表示


3.1.1 查找的方法



方法1: 顺序查找(时间复杂度为 O(n) );
//在数组的头部,建立哨兵,可减少判断的分支。

3.1.2 树



定义: nn0 个结点构成的有限集合。
- 当 n=0 时,称为 空树 ;
-树中有一个称为“ 根(Root ) ”的特殊结点, 用 r 表示;
- 其余结点可分为m(m>0) 个 互不相交的 有限集,其中每个集合本身又是一棵树,称为原来树的“ 子树 (SubTree )”。


@H_404_279@@H_418_301@



儿子-兄弟表示法
所需的总空间为 @H_301_401@@H_269_403@@H_797_404@3N (N为节点数)。


3.2 二叉树及存储结构



定义:一个有穷的结点集合。
- 这个集合 可以为空;
- 若不为空,则它是由 根结点 和称为其 左子树 TL 右子树 TR 的两个不相交的二叉树组成。




@H_404_729@

  1. 顺序存储(主要针对 );

  2. 链式存储


typedef struct PloyNode *Polynomial;//这句有什么用呢?
typedef struct PolyNode{//这两个typedef有什么联系吗?
int coef;
int expon;
Polynomial link;//这里是定义了一个相当于next后继指针吗?
}
如果按这样定义好了之后,如何定义一个这样的链表?

:
1. typedef struct PloyNode *Polynomial;
这句是说:定义了一个结构体变量的指针,以后你可以直接用Polynomial来代表struct PolyNode *这个数据.
2. typedef struct PolyNode{
int coef;
int expon;
Polynomial link; }

这个也是一个定义,定义了一个结构体变量,简化了结构体变量的定义。你可以用PolyNode来代表整个结构体变量。

再来说一下他们之间的联系: 第一个是定义的一个简化的指针变量:struct PolyNode * ; 第二个定义了一个简化的结构体变量PolyNode来代替:typedef struct PolyNode;

综上是否可理解为:指针变量Polynomial具有结构体PolyNode的结构,即L=(Polynomial)malloc(sizeof(PolyNode))这样就生成一个新的PloyNode结点。


3.3 二叉树的遍历


运用递归函数进行遍历




    • 三种遍历算法的遍历路径是一样的,只是访问各节点的时机不同。

  1. 非递归遍历(使用堆栈)

  2. 层序遍历(使用队列)


例1:输出二叉树中的 叶子结点。

例2. 求二叉树的高度

例3. 由 任意两种 遍历序列确定二叉树,对么?(其中一个必须是中序遍历)


3.4 小白专场:树的同构


程序:

//输入样例1(对应图1):
//
//8
//A 1 2
//B 3 4
//C 5 -
//D - -
//E 6 -
//G 7 -
//F - -
//H - -
//8
//G - 4
//B 7 6
//F - -
//A 5 1
//H - -
//C 0 -
//D - -
//E 2 -
//输出样例1:
//
//Yes

//输入样例2(对应图2):
//
//8
//B 5 7
//F - -
//A 0 3
//C 6 -
//H - -
//D - -
//G 4 -
//E 1 -
//8
//D 6 -
//B 5 -
//E - -
//H - -
//C 0 2
//G - 3
//F - -
//A 1 4
//输出样例2:
//
//No
//给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。
//author: Paul-Huang
//data: 18/6/2017

#include<stdio.h>
#include <stdlib.h>
#include<process.h>//引入头文件

#define MaxTree 10
#define Null -1 
#define ElementType char 
#define Tree int

//建立动态链表
struct TreeNode
{
    ElementType node;
    Tree Left;
    Tree Right;
}Tree1[MaxTree],Tree2[MaxTree];

Tree BuildTree(struct TreeNode T[]);
int Isomprphic(Tree root1,Tree root2);

int main()
{
    Tree R1,R2;
    R1 = BuildTree(Tree1);
    R2 = BuildTree(Tree2);
    if (Isomprphic(R1,R2)){
        printf("Yes\n");
    }
    else{
        printf("No\n");
    }

    system("pause");//暂停往下执行 按下任意键继续
    return 1;
}

Tree BuildTree(struct TreeNode T[])
{
    Tree check[MaxTree],Root = Null; //root = Null 空树则返回Null
    char cl,cr; 
    int i,N;
    scanf("%d\n",&N);
    if (N) {
        for ( i = 0; i < N; i++)
            check[i] = 0;
        //输入数值,并建立链表
        for (i = 0; i < N; i++)
        {
            scanf("%c %c %c\n",&T[i].node,&cl,&cr);
            if (cl != '-'){
                T[i].Left = cl - '0';
                check[T[i].Left] = 1;
            }
            else{
                T[i].Left = Null;
            }
            if (cr != '-'){
                T[i].Right = cr - '0';
                check[T[i].Right] = 1;
            }
            else{
                T[i].Right = Null;
            }
        }
        //查找二叉树的根
        for (i = 0; i < N; i++)
            if (!check[i])
                break;
        Root = i;
    }
    return Root;

}


int Isomprphic(Tree root1,Tree root2)
{
    if ((root1 == Null) && (root2 == Null))/* both empty */
        return 1;
    if (((root1 == Null) && (root2 != Null)) || ((root1 != Null) && (root2 == Null)))
        return 0;/* one of them is empty */

    if (Tree1[root1].node != Tree2[root2].node)
        return 0; /* roots are different */

    if ((Tree1[root1].Left == Null) && (Tree2[root2].Left == Null))
        /* both have no left subtree */
        return Isomprphic(Tree1[root1].Right,Tree2[root2].Right);

    if ((Tree1[root1].Right == Null) && (Tree2[root2].Right == Null))
        /* both have no right subtree */
        return Isomprphic(Tree1[root1].Left,Tree2[root2].Left);

    if ((Tree1[root1].Left != Null) && (Tree2[root2].Left != Null) &&
        ((Tree1[Tree1[root1].Left].node) == (Tree2[Tree2[root2].Left].node)))
        /* no need to swap the left and the right */
        return (Isomprphic(Tree1[root1].Left,Tree2[root2].Left)&&
        Isomprphic(Tree1[root1].Right,Tree2[root2].Right));
    else/* need to swap the left and the right */
        return (Isomprphic(Tree1[root1].Left,Tree2[root2].Right) &&
            Isomprphic(Tree1[root1].Right,Tree2[root2].Left));

}
原文链接:/datastructure/382308.html

猜你在找的数据结构相关文章