Hive中自定义Map/Reduce示例 In Java

前端之家收集整理的这篇文章主要介绍了Hive中自定义Map/Reduce示例 In Java前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

Hive支持自定义map与reduce script。接下来我用一个简单的wordcount例子加以说明。

如果自己使用Java开发,需要处理System.in,System,out以及key/value的各种逻辑,比较麻烦。有人开发了一个小框架,可以让我们使用与Hadoop中map与reduce相似的写法,只关注map与reduce即可。如今此框架已经集成在Hive中,就是$HIVE_HOME/lib/hive-contrib-2.3.0.jar,hive版本不同,对应的contrib名字可能不同。

开发工具:intellij
JDK:jdk1.7
hive:2.3.0
hadoop:2.8.1

一、开发map与reduce

“map类
public class WordCountMap {
    static void main(String args[]) throws Exception{
        new GenericMR().map(System.in,System.out,new Mapper() {
            @Override
            void map(String[] strings,Output output)  Exception {
                for(String str:strings){
                    String[] strs=str.split("\\W+");//如果源文本文件是以\t分隔的,则不需要再拆分,传入的strings就是每行拆分好的单词
                    (String str_2:strs) {
                        output.collect(new String[]{str_2,"1"});
                    }
                }
            }
        });
    }
}
"reduce类
 WordCountReducer {
    new GenericMR().reduce(System.in,1)"> Reducer() {
            @Override
            void reduce(String s,Iterator<String[]> iterator,1)">int sum=0;
                while(iterator.hasNext()){
                    Integer count=Integer.valueOf(iterator.next()[1]);
                    sum+=count;
                }
                output.collect( String[]{s,String.valueOf(sum)});
            }
        });
    }
}

 

二、导出jar包

然后导出Jar包(包含hive-contrib-2.3.0),假如导出jar包名为wordcount.jar

 

File->Project Structure
 

 
add Artifacts

 

 

不用填写Main Class,直接点击OK
 

 

jar包配置

 

 

生成jar包
 

三、编写hive sql

drop table if exists raw_lines;

-- create table raw_line,and read all the lines in '/user/inputs',this is the path on your local HDFS
create external table if not exists raw_lines(line string)
ROW FORMAT DELIMITED
stored as textfile
location ;

drop table  exists word_count;

-- create table word_count,this is the output table which will be put /user/outputs' as a text fileif not exists word_count(word string,count int)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY \t
 lines terminated by \n' STORED AS TEXTFILE LOCATION /user/outputs/;


-- add the mapper&reducer scripts as resources,please change your/local/path
--must use "add file",not add jart find map and reduce main class
add file your/local/path/wordcount.jar;

from (
        from raw_lines
        map raw_lines.line
        --call the mapper here
        using java -cp wordcount.jar WordCountMap
        as word,count
        cluster by word) map_output
insert overwrite table word_count
reduce map_output.word,map_output.count
--call the reducer here
using java -cp wordcount.jar WordCountReducer
as word,count;

此hive sql保存为wordcount.hql

 

四、执行hive sql

beeline -u [hiveserver] -n username -f wordcount.hql

 

简单说下Hive的自定义map与reduce内部原理:
hive读取文本文件,然后将其一行行输入系统标准输入中,用户自定义的Map读取标准输入流中数据,一行行处理,然后将其按照一定格式(例如:"key\tvalue")输出到标准输出流中,然后hive会将输出的字符串进行排序,然后再送到标准输入流中,Reduce再从标准输入流中读取数据进行相应处理,处理完成后,再送到标准输出流中,Hive再对Reduce结果进行处理存入表中。

原文链接:/bigdata/995319.html

猜你在找的大数据相关文章