谈谈自己对正则化的一些理解~

前端之家收集整理的这篇文章主要介绍了谈谈自己对正则化的一些理解~前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

上学的时候,就一直很好奇,模式识别理论中,常提到的正则化到底是干什么的?渐渐地,听到的多了,看到的多了,再加上平时做东西都会或多或少的接触,有了一些新的理解。

1. 正则化的目的:防止过拟合!

2. 正则化的本质:约束(限制)要优化的参数。

关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会造成模型比较复杂(想想看,本来一次函数能够拟合的数据,现在由于数据带有噪声,导致要用五次函数来拟合,多复杂!),另一方面,模型的泛化性能太差了(本来是一次函数生成的数据,结果由于噪声的干扰,得到的模型是五次的),遇到了新的数据让你测试,你所得到的过拟合的模型,正确率是很差的。

关于第2点,本来解空间是全部区域,但通过正则化添加了一些约束,使得解空间变小了,甚至在个别正则化方式下,解变得稀疏了。这一点不得不提到一个图,相信我们都经常看到这个图,但貌似还没有一个特别清晰的解释,这里我尝试解释一下,图如下:


这里的w1,w2都是模型的参数,要优化的目标参数,那个红色边框包含的区域,其实就是解空间,正如上面所说,这个时候,解空间“缩小了”,你只能在这个缩小了的空间中,寻找使得目标函数最小的w1,w2。左边图的解空间是圆的,是由于采用了L2范数正则化项的缘故,右边的是个四边形,是由于采用了L1范数作为正则化项的缘故,大家可以在纸上画画,L2构成的区域一定是个圆,L1构成的区域一定是个四边形。

再看看那蓝色的圆圈,再次提醒大家,这个坐标轴和特征(数据)没关系,它完全是参数的坐标系,每一个圆圈上,可以取无数个w1,w2,这些w1,w2有个共同的特点,用它们计算的目标函数值是相等的!那个蓝色的圆心,就是实际最优参数,但是由于我们对解空间做了限制,所以最优解只能在“缩小的”解空间中产生。

蓝色的圈圈一圈又一圈,代表着参数w1,w2在不停的变化,并且是在解空间中进行变化(这点注意,图上面没有画出来,估计画出来就不好看了),直到脱离了解空间,也就得到了图上面的那个w*,这便是目标函数的最优参数。

对比一下左右两幅图的w*,我们明显可以发现,右图的w*的w1分量是0,有没有感受到一丝丝凉意?稀疏解诞生了!是的,这就是我们想要的稀疏解,我们想要的简单模型。

还记得模式识别中的剃刀原理不?倾向于简单的模型来处理问题,避免采用复杂的。

这里必须要强调的是,这两幅图只是一个例子而已,没有说采用L1范数就一定能够得到稀疏解,完全有可能蓝色的圈圈和四边形(右图)的一边相交,得到的就不是稀疏解了,这要看蓝色圈圈的圆心在哪里。

此外,正则化其实和“带约束的目标函数是等价的,二者可以互相转换。关于这一点,我试着给出公式进行解释:

针对上图(左图),可以建立数学模型如下:


通过熟悉的拉格朗日乘子法(注意这个方法的名字),可以变为如下形式:


看到没,这两个等价公式说明了,正则化的本质就是,给优化参数一定约束,所以,正则化与加限制约束,只是变换了一个样子而已。

此外,我们注意,正则化因子,也就是里面的那个lamda,如果它变大了,说明目标函数的作用变小了,正则化项的作用变大了,对参数的限制能力加强了,这会使得参数的变化不那么剧烈(仅对如上数学模型),直接的好处就是避免模型过拟合。反之,自己想想看吧。。。

个人感觉,“正则化”这几个字叫的实在是太抽象了,会吓唬到人,其实真没啥。如果改成“限制化”或者是“约束化”,岂不是更好?

原文链接:https://www.f2er.com/regex/361267.html

猜你在找的正则表达式相关文章