计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

前端之家收集整理的这篇文章主要介绍了计算pytorch标准化(Normalize)所需要数据集的均值和方差实例前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

pytorch做标准化利用transforms.Normalize(mean_vals,std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
  mean_vals = [0.471,0.448,0.408]
  std_vals = [0.234,0.239,0.242]
elif 'imagenet' in args.dataset:
  mean_vals = [0.485,0.456,0.406]
  std_vals = [0.229,0.224,0.225]

计算自己数据集图像像素的均值方差:

import numpy as np
import cv2
import random

# calculate means and std
train_txt_path = './train_val_list.txt'

CNum = 10000   # 挑选多少图片进行计算

img_h,img_w = 32,32
imgs = np.zeros([img_w,img_h,3,1])
means,stdevs = [],[]

with open(train_txt_path,'r') as f:
  lines = f.readlines()
  random.shuffle(lines)  # shuffle,随机挑选图片

  for i in tqdm_notebook(range(CNum)):
    img_path = os.path.join('./train',lines[i].rstrip().split()[0])

    img = cv2.imread(img_path)
    img = cv2.resize(img,(img_h,img_w))
    img = img[:,:,np.newaxis]

    imgs = np.concatenate((imgs,img),axis=3)
#     print(i)

imgs = imgs.astype(np.float32)/255.

for i in tqdm_notebook(range(3)):
  pixels = imgs[:,i,:].ravel() # 拉成一行
  means.append(np.mean(pixels))
  stdevs.append(np.std(pixels))

# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()

print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {},normStd = {})'.format(means,stdevs))

以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

原文链接:https://www.f2er.com/python/535027.html

猜你在找的Python相关文章