我正在尝试对Keras张量(带有TF后端)应用按功能进行特征缩放和平移(也称为仿射变换-该概念在this distill article的命名部分中进行了描述).
我想转换的张量称为X,是卷积层的输出,其形状为(B,H,W,F),表示(批量大小,高度,宽度,特征图的数量).
我变换的参数是二维(B,F)张量,即beta和γ.
我想要X *伽玛beta,或更具体地说,
for b in range(B):
for f in range(F):
X[b,:,f] = X[b,f] * gamma[b,f] + beta[b,f]
但是,这两种方法都无法在Keras中使用.第二个,按元素分配,由于
TypeError: 'Tensor' object does not support item assignment
并且应该是相当低效的.
第一次失败的方式对我来说更神秘,但我的猜测是这是广播的问题.在下面的完整代码回溯中,您可以看到我的尝试.
需要注意的两件事是,该错误仅在训练时发生(而不是在编译时发生),并且至少根据模型摘要,似乎从未使用过“ transform_vars”输入.
关于如何实现这一点的任何想法?
import numpy as np
import keras as ks
import keras.backend as K
print(ks.__version__)
# Load example data (here MNIST)
from keras.datasets import mnist
(x_img_train,y_train),_ = mnist.load_data()
x_img_train = np.expand_dims(x_img_train,-1)
# Generator some data to use for transformations
n_transform_vars = 10
x_transform_train = np.random.randn(y_train.shape[0],n_transform_vars)
# Inputs
input_transform = ks.layers.Input(x_transform_train.shape[1:],name='transform_vars')
input_img = ks.layers.Input(x_img_train.shape[1:],name='imgs')
# Number of feature maps
n_features = 32
# Create network that calculates the transformations
tns_transform = ks.layers.Dense(2 * n_features)(input_transform)
tns_transform = ks.layers.Reshape((2,32))(tns_transform)
# Do a convolution
tns_conv = ks.layers.Conv2D(filters=n_features,kernel_size=3,padding='same')(input_img)
# Apply batch norm
bn = ks.layers.BatchNormalization()
# Freeze the weights of the batch norm,as they are going to be overwritten
bn.trainable = False
# Apply
tns_conv = bn(tns_conv)
# Attempt to apply the affine transformation
def scale_and_shift(x):
return x * tns_transform[:,0] + tns_transform[:,1]
tns_conv = ks.layers.Lambda(scale_and_shift,name='affine_transform')(tns_conv)
tns_conv = ks.layers.Flatten()(tns_conv)
output = ks.layers.Dense(1)(tns_conv)
model = ks.models.Model(inputs=[input_img,input_transform],outputs=output)
model.compile(loss='mse',optimizer='Adam')
model.summary()
model.fit([x_img_train,x_transform_train],y_train,batch_size=8)
这导致
2.2.4
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
imgs (InputLayer) (None,28,1) 0
_________________________________________________________________
conv2d_25 (Conv2D) (None,32) 320
_________________________________________________________________
batch_normalization_22 (Batc (None,32) 128
_________________________________________________________________
affine_transform (Lambda) (None,32) 0
_________________________________________________________________
flatten_6 (Flatten) (None,25088) 0
_________________________________________________________________
dense_33 (Dense) (None,1) 25089
=================================================================
Total params: 25,537
Trainable params: 25,409
Non-trainable params: 128
_________________________________________________________________
Epoch 1/1
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-35-14724d9432ef> in <module>
49 model.summary()
50
---> 51 model.fit([x_img_train,batch_size=8)
~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/engine/training.py in fit(self,x,y,batch_size,epochs,verbose,callbacks,validation_split,validation_data,shuffle,class_weight,sample_weight,initial_epoch,steps_per_epoch,validation_steps,**kwargs)
1037 initial_epoch=initial_epoch,1038 steps_per_epoch=steps_per_epoch,-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self,x=None,y=None,~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/engine/training_arrays.py in fit_loop(model,f,ins,out_labels,val_f,val_ins,callback_metrics,validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l,o in zip(out_labels,outs):
~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self,inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in _call(self,inputs)
2673 fetched = self._callable_fn(*array_vals,run_Metadata=self.run_Metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~/miniconda3/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in __call__(self,*args,**kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session,self._handle,args,status,-> 1439 run_Metadata_ptr)
1440 if run_Metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_Metadata_ptr)
~/miniconda3/envs/py3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self,type_arg,value_arg,traceback_arg)
526 None,None,527 compat.as_text(c_api.TF_Message(self.status.status)),--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: Incompatible shapes: [8,32] vs. [8,32]
[[{{node training_5/Adam/gradients/affine_transform_18/mul_grad/BroadcastGradientArgs}} = BroadcastGradientArgs[T=DT_INT32,_class=["loc:@training_5/Adam/gradients/batch_normalization_22/cond/Merge_grad/cond_grad"],_device="/job:localhost/replica:0/task:0/device:cpu:0"](training_5/Adam/gradients/affine_transform_18/mul_grad/Shape,training_5/Adam/gradients/affine_transform_18/mul_grad/Shape_1)]]
最佳答案
我设法将仿射变换实现为自定义层(在文献中也称为FiLM层):
原文链接:https://www.f2er.com/python/533230.htmlclass FiLM(ks.layers.Layer):
def __init__(self,widths=[64,64],activation='leakyrelu',initialization='glorot_uniform',**kwargs):
self.widths = widths
self.activation = activation
self.initialization = initialization
super(FiLM,self).__init__(**kwargs)
def build(self,input_shape):
assert isinstance(input_shape,list)
feature_map_shape,FiLM_vars_shape = input_shape
self.n_feature_maps = feature_map_shape[-1]
self.height = feature_map_shape[1]
self.width = feature_map_shape[2]
# Collect trainable weights
trainable_weights = []
# Create weights for hidden layers
self.hidden_dense_layers = []
for i,width in enumerate(self.widths):
dense = ks.layers.Dense(width,kernel_initializer=self.initialization,name=f'FiLM_dense_{i}')
if i==0:
build_shape = FiLM_vars_shape[:2]
else:
build_shape = (None,self.widths[i-1])
dense.build(build_shape)
trainable_weights += dense.trainable_weights
self.hidden_dense_layers.append(dense)
# Create weights for output layer
self.output_dense = ks.layers.Dense(2 * self.n_feature_maps,# assumes channel_last
kernel_initializer=self.initialization,name=f'FiLM_dense_output')
self.output_dense.build((None,self.widths[-1]))
trainable_weights += self.output_dense.trainable_weights
# Pass on all collected trainable weights
self._trainable_weights = trainable_weights
super(FiLM,self).build(input_shape)
def call(self,x):
assert isinstance(x,list)
conv_output,FiLM_vars = x
# Generate FiLM outputs
tns = FiLM_vars
for i in range(len(self.widths)):
tns = self.hidden_dense_layers[i](tns)
tns = get_activation(activation=self.activation)(tns)
FiLM_output = self.output_dense(tns)
# Duplicate in order to apply to entire feature maps
# Taken from https://github.com/GuessWhatGame/neural_toolBox/blob/master/film_layer.py
FiLM_output = K.expand_dims(FiLM_output,axis=[1])
FiLM_output = K.expand_dims(FiLM_output,axis=[1])
FiLM_output = K.tile(FiLM_output,[1,self.height,self.width,1])
# Split into gammas and betas
gammas = FiLM_output[:,:self.n_feature_maps]
betas = FiLM_output[:,self.n_feature_maps:]
# Apply affine transformation
return (1 + gammas) * conv_output + betas
def compute_output_shape(self,list)
return input_shape[0]
它取决于函数get_activation,该函数实际上仅返回Keras激活实例.您可以在下面看到完整的工作示例.
注意,该层在该层本身中对transform_vars进行处理.如果要在另一个网络中处理这些变量,请参见下面的编辑.
import numpy as np
import keras as ks
import keras.backend as K
def get_activation(tns=None,activation='relu'):
'''
Adds an activation layer to a graph.
Args :
tns :
*Keras tensor or None*
Input tensor. If not None,then the graph will be connected through
it,and a tensor will be returned. If None,the activation layer
will be returned.
activation :
*str,optional (default='relu')*
The name of an activation function.
One of 'relu','leakyrelu','prelu','elu','mrelu' or 'swish',or anything that Keras will recognize as an activation function
name.
Returns :
*Keras tensor or layer instance* (see tns argument)
'''
if activation == 'relu':
act = ks.layers.ReLU()
elif activation == 'leakyrelu':
act = ks.layers.LeakyReLU()
elif activation == 'prelu':
act = ks.layers.PReLU()
elif activation == 'elu':
act = ks.layers.ELU()
elif activation == 'swish':
def swish(x):
return K.sigmoid(x) * x
act = ks.layers.Activation(swish)
elif activation == 'mrelu':
def mrelu(x):
return K.minimum(K.maximum(1-x,0),K.maximum(1+x,0))
act = ks.layers.Activation(mrelu)
elif activation == 'gaussian':
def gaussian(x):
return K.exp(-x**2)
act = ks.layers.Activation(gaussian)
elif activation == 'flipped_gaussian':
def flipped_gaussian(x):
return 1 - K.exp(-x**2)
act = ks.layers.Activation(flipped_gaussian)
else:
act = ks.layers.Activation(activation)
if tns is not None:
return act(tns)
else:
return act
class FiLM(ks.layers.Layer):
def __init__(self,list)
return input_shape[0]
print(ks.__version__)
# Load example data (here MNIST)
from keras.datasets import mnist
(x_img_train,name='imgs')
# Number of feature maps
n_features = 32
# Do a convolution
tns = ks.layers.Conv2D(filters=n_features,as they are going to be overwritten
bn.trainable = False
# Apply batch norm
tns = bn(tns)
# Apply FiLM layer
tns = FiLM(widths=[12,24],name='FiLM_layer')([tns,input_transform])
# Make 1D output
tns = ks.layers.Flatten()(tns)
output = ks.layers.Dense(1)(tns)
# Compile and plot
model = ks.models.Model(inputs=[input_img,optimizer='Adam')
model.summary()
ks.utils.plot_model(model,'./model_with_FiLM.png')
# Train
model.fit([x_img_train,batch_size=8)
编辑:
这是“非活动” FiLM层,它吸收了另一个网络(FiLM生成器)的预测,并将其用作伽玛和贝塔系数.
这样做是等效的,但比较简单,因为您将所有可训练的重量都保留在FiLM生成器中,从而确保了重量共享.
class FiLM(ks.layers.Layer):
def __init__(self,**kwargs):
super(FiLM,FiLM_tns_shape = input_shape
self.height = feature_map_shape[1]
self.width = feature_map_shape[2]
self.n_feature_maps = feature_map_shape[-1]
assert(int(2 * self.n_feature_maps)==FiLM_tns_shape[1])
super(FiLM,FiLM_tns = x
# Duplicate in order to apply to entire feature maps
# Taken from https://github.com/GuessWhatGame/neural_toolBox/blob/master/film_layer.py
FiLM_tns = K.expand_dims(FiLM_tns,axis=[1])
FiLM_tns = K.expand_dims(FiLM_tns,axis=[1])
FiLM_tns = K.tile(FiLM_tns,1])
# Split into gammas and betas
gammas = FiLM_tns[:,:self.n_feature_maps]
betas = FiLM_tns[:,list)
return input_shape[0]