在NLP任务中使用GloVe嵌入时,GloVe中可能不存在来自数据集的某些单词.因此,我们为这些未知单词实例化随机权重.
是否可以冻结从GloVe获得的重量,并仅训练新实例化的重量?
我只知道我们可以设置:
model.embedding.weight.requires_grad = False
但这使新单词难以训练.
最佳答案
1.将嵌入分为两个单独的对象
原文链接:https://www.f2er.com/python/533174.html一种方法是使用两个单独的嵌入,一个用于预训练,另一个用于待训练.
GloVe应该被冻结,而没有预训练表示的GloVe应该从可训练层获取.
如果格式化数据以用于预训练的令牌表示,则该数据的范围比不具有GloVe表示的令牌的范围小.假设您的预训练索引在[0,300]范围内,而没有代表性的索引在[301,500].我会遵循以下思路:
import numpy as np
import torch
class YourNetwork(torch.nn.Module):
def __init__(self,glove_embeddings: np.array,how_many_tokens_not_present: int):
self.pretrained_embedding = torch.nn.Embedding.from_pretrained(glove_embeddings)
self.trainable_embedding = torch.nn.Embedding(
how_many_tokens_not_present,glove_embeddings.shape[1]
)
# Rest of your network setup
def forward(self,batch):
# Which tokens in batch do not have representation,should have indices BIGGER
# than the pretrained ones,adjust your data creating function accordingly
mask = batch > self.pretrained_embedding.shape[0]
# You may want to optimize it,you could probably get away without copy,though
# I'm not currently sure how
pretrained_batch = batch.copy()
pretrained_batch[mask] = 0
embedded_batch = self.pretrained_embedding[pretrained_batch]
# Every token without representation has to be brought into appropriate range
batch -= self.pretrained_embedding.shape[0]
# Zero out the ones which already have pretrained embedding
batch[~mask] = 0
non_pretrained_embedded_batch = self.trainable_embedding(batch)
# And finally change appropriate tokens from placeholder embedding created by
# pretrained into trainable embeddings.
embedded_batch[mask] = non_pretrained_embedded_batch[mask]
# Rest of your code
...
假设您的预训练索引在[0,500].
2.指定令牌的零梯度.
这有点棘手,但我认为它非常简洁且易于实现.因此,如果获得没有GloVe表示形式的标记的索引,则可以在反向传播后将它们的梯度显式归零,这样这些行就不会被更新.
import torch
embedding = torch.nn.Embedding(10,3)
X = torch.LongTensor([[1,2,4,5],[4,3,9]])
values = embedding(X)
loss = values.mean()
# Use whatever loss you want
loss.backward()
# Let's say those indices in your embedding are pretrained (have GloVe representation)
indices = torch.LongTensor([2,5])
print("Before zeroing out gradient")
print(embedding.weight.grad)
print("After zeroing out gradient")
embedding.weight.grad[indices] = 0
print(embedding.weight.grad)
Before zeroing out gradient
tensor([[0.0000,0.0000,0.0000],[0.0417,0.0417,0.0417],[0.0833,0.0833,0.0833],[0.0000,0.0417]])
After zeroing out gradient
tensor([[0.0000,0.0417]])