我想知道用稀疏矩阵替换不满足某个条件的行的最佳方法是什么.例如(我使用普通数组进行说明):
我想用一行零替换总和大于10的每一行
a = np.array([[0,1,1],[1,2,0],[6,7,4,# sum > 10
[0,[7,3,8],# sum > 10
[0,2]])
我想用零替换[2]和[4],所以我的输出应该如下所示:
array([[0,[0,2]])
这对于密集矩阵来说非常简单:
row_sum = a.sum(axis=1)
to_keep = row_sum >= 10
a[to_keep] = np.zeros(a.shape[1])
但是,当我尝试:
s = sparse.csr_matrix(a)
s[to_keep,:] = np.zeros(a.shape[1])
我收到此错误:
raise NotImplementedError("Fancy indexing in assignment not "
NotImplementedError: Fancy indexing in assignment not supported for csr matrices.
因此,我需要一个不同的稀疏矩阵解决方案.我想出了这个:
def zero_out_unfit_rows(s_mat,limit_row_sum):
row_sum = s_mat.sum(axis=1).T.A[0]
to_keep = row_sum <= limit_row_sum
to_keep = to_keep.astype('int8')
temp_diag = get_sparse_diag_mat(to_keep)
return temp_diag * s_mat
def get_sparse_diag_mat(my_diag):
N = len(my_diag)
my_diags = my_diag[np.newaxis,:]
return sparse.dia_matrix((my_diags,[0]),shape=(N,N))
这依赖于以下事实:如果我们将单位矩阵中对角线的第2和第4个元素设置为零,则将预乘矩阵的行设置为零.
最佳答案
不确定它是否非常scithonic,但是通过直接访问guts可以更好地完成稀疏矩阵上的大量操作.对于你的情况,我个人会这样做:
原文链接:https://www.f2er.com/python/439627.htmla = np.array([[0,2]])
sps_a = sps.csr_matrix(a)
# get sum of each row:
row_sum = np.add.reduceat(sps_a.data,sps_a.indptr[:-1])
# set values to zero
row_mask = row_sum > 10
nnz_per_row = np.diff(sps_a.indptr)
sps_a.data[np.repeat(row_mask,nnz_per_row)] = 0
# ask scipy.sparse to remove the zeroed entries
sps_a.eliminate_zeros()
>>> sps_a.toarray()
array([[0,2]])
>>> sps_a.nnz # it does remove the entries,not simply set them to zero
10