我正在尝试计算由纬度和经度识别的一长串位置列表的距离矩阵.使用Haversine公式的经度,该公式采用两个坐标对元组来产生距离:
def haversine(point1,point2,miles=False):
""" Calculate the great-circle distance bewteen two points on the Earth surface.
:input: two 2-tuples,containing the latitude and longitude of each point
in decimal degrees.
Example: haversine((45.7597,4.8422),(48.8567,2.3508))
:output: Returns the distance bewteen the two points.
The default unit is kilometers. Miles can be returned
if the ``miles`` parameter is set to True.
"""
我可以使用嵌套for循环计算所有点之间的距离,如下所示:
data.head()
id coordinates
0 1 (16.3457688674,6.30354512503)
1 2 (12.494749307,28.6263955635)
2 3 (27.794615136,60.0324947881)
3 4 (44.4269923769,110.114216113)
4 5 (-69.8540884125,87.9468778773)
使用简单的功能:
distance = {}
def haver_loop(df):
for i,point1 in df.iterrows():
distance[i] = []
for j,point2 in df.iterrows():
distance[i].append(haversine(point1.coordinates,point2.coordinates))
return pd.DataFrame.from_dict(distance,orient='index')
但考虑到时间的复杂性,这需要相当长的一段时间,在20分钟左右运行500分,而且我有更长的清单.这让我看着矢量化,我遇到了numpy.vectorize((docs),但无法弄清楚如何在这种情况下应用它.
最佳答案
您可以将函数作为参数提供给np.vectorize(),然后可以将其用作pandas.groupby.apply的参数,如下所示:
原文链接:https://www.f2er.com/python/439335.htmlhaver_vec = np.vectorize(haversine,otypes=[np.int16])
distance = df.groupby('id').apply(lambda x: pd.Series(haver_vec(df.coordinates,x.coordinates)))
例如,样本数据如下:
length = 500
df = pd.DataFrame({'id':np.arange(length),'coordinates':tuple(zip(np.random.uniform(-90,90,length),np.random.uniform(-180,180,length)))})
比较500分:
def haver_vect(data):
distance = data.groupby('id').apply(lambda x: pd.Series(haver_vec(data.coordinates,x.coordinates)))
return distance
%timeit haver_loop(df): 1 loops,best of 3: 35.5 s per loop
%timeit haver_vect(df): 1 loops,best of 3: 593 ms per loop