python – Pandas read_csv加速

前端之家收集整理的这篇文章主要介绍了python – Pandas read_csv加速前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在阅读一个大型的csv,它有大约1000万行和20个不同的列(带有标题名称).

我有值,2列有日期和一些字符串.

目前,我需要大约1.5分钟来加载数据,如下所示:

df = pd.read_csv('data.csv',index_col='date',parse_dates = 'date')

我想问一下,如何才能显着提高速度,一旦读取数据就拥有相同的数据帧.

我尝试过使用HDF5数据库,但速度一样慢.

我试图读取的数据的子集(我选择了8列,从实际的20列和几百万行中得到3行):

Date    Comp     Rating Price   Estprice    Dividend?   Date_earnings   Returns
3/12/2017   Apple   Buy   100   114              Yes    4/4/2017    0.005646835
3/12/2017   Blackberry  Sell    120 97            No    4/25/2017   0.000775331
3/12/2017   Microsoft   Hold    140 100          Yes    5/28/2017   0.003028423

感谢您的建议.

最佳答案
我们来试试吧!

数据生成

sz = 10**3

df = pd.DataFrame(np.random.randint(0,10**6,(sz,2)),columns=['i1','i2'])
df['date'] = pd.date_range('2000-01-01',freq='1S',periods=len(df))
df['dt2'] = pd.date_range('1980-01-01',freq='999S',periods=len(df))
df['f1'] = np.random.rand(len(df))
df['f2'] = np.random.rand(len(df))
# generate 10 string columns 
for i in range(1,11):
    df['s{}'.format(i)] =  pd.util.testing.rands_array(10,len(df))

df = pd.concat([df] * 10**3,ignore_index=True).sample(frac=1)
df = df.set_index(df.pop('date').sort_values())

我们已经生成了以下DF

In [59]: df
Out[59]:
                         i1      i2                 dt2        f1     ...              s7          s8          s9         s10
date                                                                  ...
2000-01-01 00:00:00  216625    4179 1980-01-04 04:35:24  0.679989     ...      7G8rLnoocA  E7Ot7oPsJ6  puQamLn0I2  zxHrATQn0m
2000-01-01 00:00:00  374740  967991 1980-01-09 11:07:48  0.202064     ...      wLETO2g8uL  MhtzNLPXCH  PW1uKxY0df  wTakdCe6nK
2000-01-01 00:00:00  152181  627451 1980-01-10 11:49:39  0.956117     ...      mXOsfUPqOy  6IIst7UFDT  nL6XZxrT3r  BxPCFNdZTK
2000-01-01 00:00:00  915732  730737 1980-01-06 10:25:30  0.854145     ...      Crh94m085p  M1tbrorxGT  XWSKk3b8Pv  M9FWQtPzaa
2000-01-01 00:00:00  590262  248378 1980-01-06 11:48:45  0.307373     ...      wRnMPxeopd  JF24uTUwJC  2CRrs9yB2N  hxYrXFnT1H
2000-01-01 00:00:00  161183  620876 1980-01-08 21:48:36  0.207536     ...      cyN0AExPO2  POaldI6Y0l  TDc13rPdT0  xgoDOW8Y1L
2000-01-01 00:00:00  589696  784856 1980-01-12 02:07:21  0.909340     ...      GIRAAVBRpj  xwcnpwFohz  wqcoTMjQ4S  GTcIWXElo7
...                     ...     ...                 ...       ...     ...             ...         ...         ...         ...
2000-01-01 00:16:39  773606  205714 1980-01-12 07:40:21  0.895944     ...      HEkXfD7pku  1ogy12wBom  OT3KmQRFGz  Dp1cK5R4Gq
2000-01-01 00:16:39  915732  730737 1980-01-06 10:25:30  0.854145     ...      Crh94m085p  M1tbrorxGT  XWSKk3b8Pv  M9FWQtPzaa
2000-01-01 00:16:39  990722  567886 1980-01-03 05:50:06  0.676511     ...      gVO3g0I97R  yCqOhTVeEi  imCCeQa0WG  9tslOJGWDJ
2000-01-01 00:16:39  531778  438944 1980-01-04 20:07:48  0.190714     ...      rbLmkbnO5G  ATm3BpWLC0  moLkyY2Msc  7A2UJERrBG
2000-01-01 00:16:39  880791  245911 1980-01-02 15:57:36  0.014967     ...      bZuKNBvrEF  K84u9HyAmG  4yy2bsUVNn  WZQ5Vvl9zD
2000-01-01 00:16:39  239866  425516 1980-01-10 05:26:42  0.667183     ...      6xukg6TVah  VEUz4d92B8  zHDxty6U3d  ItztnI5LmJ
2000-01-01 00:16:39  338368  804695 1980-01-12 05:27:09  0.084818     ...      NM4fdjKBuW  LXGUbLIuw9  SHdpnttX6q  4oXKMsaOJ5

[1000000 rows x 15 columns]

In [60]: df.shape
Out[60]: (1000000,15)

In [61]: df.info()

让我们以不同的格式将它写入磁盘:( CSV,HDF5固定,HDF5表,羽毛):

# CSV
df.to_csv('c:/tmp/test.csv')
# HDF5 table format
df.to_hdf('c:/tmp/test.h5','test',format='t')
#  HDF5 fixed format
df.to_hdf('c:/tmp/test_fix.h5','test')
# Feather format
import feather
feather.write_dataframe(df,'c:/tmp/test.feather')

定时:

现在我们可以测量从磁盘读取:

In [54]: # CSV
    ...: %timeit pd.read_csv('c:/tmp/test.csv',parse_dates=['date','dt2'],index_col=0)
1 loop,best of 3: 12.3 s per loop   # 3rd place

In [55]: # HDF5 fixed format
    ...: %timeit pd.read_hdf('c:/tmp/test_fix.h5','test')
1 loop,best of 3: 1.85 s per loop   # 1st place

In [56]: # HDF5 table format
    ...: %timeit pd.read_hdf('c:/tmp/test.h5',best of 3: 24.2 s per loop   # 4th place

In [57]: # Feather
    ...: %timeit feather.read_dataframe('c:/tmp/test.feather')
1 loop,best of 3: 3.21 s per loop   # 2nd place

如果您不总是需要读取所有数据,那么将数据存储为HDF5表格格式是有意义的(并使用data_columns参数来索引那些将用于过滤的列).

原文链接:https://www.f2er.com/python/438713.html

猜你在找的Python相关文章