我有一些财务数据,并希望只获得特定时间段(小时,天,月……)的最后一笔交易.
例:
>>df
time price_BRL qt time_dt
1312001297 23.49 1.00 2011-07-30 04:48:17
1312049148 23.40 1.00 2011-07-30 18:05:48
1312121523 23.49 2.00 2011-07-31 14:12:03
1312121523 23.50 6.50 2011-07-31 14:12:03
1312177622 23.40 2.00 2011-08-01 05:47:02
1312206416 23.25 1.00 2011-08-01 13:46:56
1312637929 18.95 1.50 2011-08-06 13:38:49
1312637929 18.95 4.00 2011-08-06 13:38:49
1312817114 0.80 0.01 2011-08-08 15:25:14
1312818289 0.10 0.01 2011-08-08 15:44:49
1312819795 6.00 0.09 2011-08-08 16:09:55
1312847064 16.00 0.86 2011-08-08 23:44:24
1312849282 16.00 6.14 2011-08-09 00:21:22
1312898146 19.90 1.00 2011-08-09 13:55:46
1312915666 6.00 0.01 2011-08-09 18:47:46
1312934897 19.90 1.00 2011-08-10 00:08:17
>>filter_by_last_day(df)
time price_BRL qt time_dt
1312049148 23.40 1.00 2011-07-30 18:05:48
1312121523 23.50 6.50 2011-07-31 14:12:03
1312206416 23.25 1.00 2011-08-01 13:46:56
1312637929 18.95 4.00 2011-08-06 13:38:49
1312847064 16.00 0.86 2011-08-08 23:44:24
1312915666 6.00 0.01 2011-08-09 18:47:46
1312934897 19.90 1.00 2011-08-10 00:08:17
我正在考虑使用groupby()并获得当天的平均值()这个解决方案也可以解决我的问题,但不完全正确)但不知道如何选择df.groupby这样的日子(‘time.day ‘).持续()
最佳答案
您可以在
原文链接:https://www.f2er.com/python/438687.htmldt.date
之前使用groupby
并在last
之前聚合:
#if necessery convert to datetime
df.time_dt = pd.to_datetime(df.time_dt)
df = df.groupby(df.time_dt.dt.date).last().reset_index(drop=True)
print (df)
time price_BRL qt time_dt
0 1312049148 23.40 1.00 2011-07-30 18:05:48
1 1312121523 23.50 6.50 2011-07-31 14:12:03
2 1312206416 23.25 1.00 2011-08-01 13:46:56
3 1312637929 18.95 4.00 2011-08-06 13:38:49
4 1312847064 16.00 0.86 2011-08-08 23:44:24
5 1312915666 6.00 0.01 2011-08-09 18:47:46
6 1312934897 19.90 1.00 2011-08-10 00:08:17
谢谢MaxU的另一个解决方案 – 为返回DataFrame添加参数as_index = False:
df = df.groupby(df.time_dt.dt.date,as_index=False).last()
print (df)
time price_BRL qt time_dt
0 1312049148 23.40 1.00 2011-07-30 18:05:48
1 1312121523 23.50 6.50 2011-07-31 14:12:03
2 1312206416 23.25 1.00 2011-08-01 13:46:56
3 1312637929 18.95 4.00 2011-08-06 13:38:49
4 1312847064 16.00 0.86 2011-08-08 23:44:24
5 1312915666 6.00 0.01 2011-08-09 18:47:46
6 1312934897 19.90 1.00 2011-08-10 00:08:17
使用resample
的解决方案,但必须在dropna
之前删除NaN行:
df = df.resample('d',on='time_dt').last().dropna(how='all').reset_index(drop=True)
#cast column time to int
df.time = df.time.astype(int)
print (df)
time price_BRL qt time_dt
0 1312049148 23.40 1.00 2011-07-30 18:05:48
1 1312121523 23.50 6.50 2011-07-31 14:12:03
2 1312206416 23.25 1.00 2011-08-01 13:46:56
3 1312637929 18.95 4.00 2011-08-06 13:38:49
4 1312847064 16.00 0.86 2011-08-08 23:44:24
5 1312915666 6.00 0.01 2011-08-09 18:47:46
6 1312934897 19.90 1.00 2011-08-10 00:08:17
—
你也可以使用dt.month
:
df = df.groupby(df.time_dt.dt.month).last().reset_index(drop=True)
print (df)
time price_BRL qt time_dt
0 1312121523 23.5 6.5 2011-07-31 14:12:03
1 1312934897 19.9 1.0 2011-08-10 00:08:17
有几个小时它有点复杂,如果需要groupby按日期和小时一起,解决方案是用astype将分钟和秒数替换为0:
hours = df.time_dt.values.astype('