给定df
df = pd.DataFrame([[1,5,2,8,2],[2,4,20,[3,3,1,[4,3],[5,-5,-4],[1,-20],-8],-1,-1],12],-2]],columns=['A','B','C','D','E'],index=[1,6,7,9,10])
基于this answer,我创建了一个计算条纹(向上,向下)的函数.
def streaks(df,column): #Create sign column df['sign'] = 0 df.loc[df[column] > 0,'sign'] = 1 df.loc[df[column] < 0,'sign'] = 0 # Downstreak df['d_streak2'] = (df['sign'] == 0).cumsum() df['cumsum'] = np.nan df.loc[df['sign'] == 1,'cumsum'] = df['d_streak2'] df['cumsum'] = df['cumsum'].fillna(method='ffill') df['cumsum'] = df['cumsum'].fillna(0) df['d_streak'] = df['d_streak2'] - df['cumsum'] df.drop(['d_streak2','cumsum'],axis=1,inplace=True) # Upstreak df['u_streak2'] = (df['sign'] == 1).cumsum() df['cumsum'] = np.nan df.loc[df['sign'] == 0,'cumsum'] = df['u_streak2'] df['cumsum'] = df['cumsum'].fillna(method='ffill') df['cumsum'] = df['cumsum'].fillna(0) df['u_streak'] = df['u_streak2'] - df['cumsum'] df.drop(['u_streak2',inplace=True) del df['sign'] return df
功能很好,但很长.我确信写这个有更好的方法.我尝试了另一个答案,但效果不佳.
这是所需的输出
streaks(df,'E') A B C D E d_streak u_streak 1 1 5 2 8 2 0.0 1.0 2 2 4 4 20 2 0.0 2.0 3 3 3 1 20 2 0.0 3.0 4 4 2 2 1 3 0.0 4.0 5 5 1 4 -5 -4 1.0 0.0 6 1 5 2 2 -20 2.0 0.0 7 2 4 4 3 -8 3.0 0.0 8 3 3 1 -1 -1 4.0 0.0 9 4 2 2 0 12 0.0 1.0 10 5 1 4 20 -2 1.0 0.0
解决方法
您可以简化功能,如下所示:
def streaks(df,col): sign = np.sign(df[col]) s = sign.groupby((sign!=sign.shift()).cumsum()).cumsum() return df.assign(u_streak=s.where(s>0,0.0),d_streak=s.where(s<0,0.0).abs())
使用它:
streaks(df,'E')
首先,使用np.sign计算所考虑的列中存在的每个单元的符号.这些将1分配给正数,将-1分配给负数.
接下来,使用sign!= sign.shift()来识别相邻值的集合(比较当前单元格和它的下一个)并获取它将在分组过程中使用的累积和.
执行groupby,将这些作为键/条件,并再次获取子组元素的累积和.
最后,将正计算的cumsum值分配给ustreak,将负的值(取其模数后的绝对值)分配给dstreak.