有没有有效的方法在笛卡尔坐标系和
n-spherical one之间进行切换?转型如下:
以下是我的代码,但我想摆脱循环:
import numpy as np import scipy.sparse def coord_transform_n(r,alpha): """alpha: the n-2 values between [0,\pi) and last one between [0,2\pi) """ x=[] for i in range(alpha.shape[0]): x.append(r*np.prod(np.sin(alpha[0:i]))*np.cos(alpha[i])) return np.asarray(x) print coord_transform_n(1,np.asarray(np.asarray([1,2])))
解决方法
您可以通过记忆中间产品来加速您的原始代码,即
def ct_dynamic(r,alpha): """alpha: the n-2 values between [0,2\pi) """ x = np.zeros(len(alpha) + 1) s = 1 for e,a in enumerate(alpha): x[e] = s*np.cos(a) s *= np.sin(a) x[len(alpha)] = s return x*r
但仍然在速度上失去基于numpy的方法
def ct(r,arr): a = np.concatenate((np.array([2*np.pi]),arr)) si = np.sin(a) si[0] = 1 si = np.cumprod(si) co = np.cos(a) co = np.roll(co,-1) return si*co*r >>> n = 10 >>> c = np.random.random_sample(n)*np.pi >>> all(ct(1,c) == ct_dynamic(1,c)) True >>> timeit.timeit('from __main__ import coord_transform_n as f,c; f(2.4,c)',number=10000) 2.213547945022583 >>> timeit.timeit('from __main__ import ct_dynamic as f,number=10000) 0.9227950572967529 >>> timeit.timeit('from __main__ import ct as f,number=10000) 0.5197498798370361