php解决约瑟夫环算法实例分析

前端之家收集整理的这篇文章主要介绍了php解决约瑟夫环算法实例分析前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

本文实例讲述了PHP解决约瑟夫环算法。分享给大家供大家参考,具体如下:

今天偶遇一道算法题

“约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去…,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n,输出最后那个大王的编号。

方法一:递归算法

function killMonkey($monkeys,$m,$current = 0){
  $number = count($monkeys);
  $num = 1;
  if(count($monkeys) == 1){
    echo $monkeys[0]."成为猴王了";
    return;
  }
  else{
    while($num++ < $m){
      $current++ ;
      $current = $current%$number;
    }
    echo $monkeys[$current]."的猴子被踢掉了<br/>";
    array_splice($monkeys,$current,1);
    killMonkey($monkeys,$current);
  }
}
$monkeys = array(1,3,4,5,6,7,8,9,10); //monkeys的编号
$m = 3; //数到第几只猴子被踢出
killMonkey($monkeys,$m);

运行结果:

3的猴子被踢掉了
6的猴子被踢掉了
9的猴子被踢掉了
2的猴子被踢掉了
7的猴子被踢掉了
1的猴子被踢掉了
8的猴子被踢掉了
5的猴子被踢掉了
10的猴子被踢掉了
4成为猴王了

方法二:线性表应用

最后这个算法最牛,

哦,是这样的,每个猴子出列后,剩下的猴子又组成了另一个子问题。只是他们的编号变化了。第一个出列的猴子肯定是a[1]=m(mod)n(m/n的余数),他除去后剩下的猴子是a[1]+1,a[1]+2,n,1,…a[1]-2,a[1]-1,对应的新编号是1,3…n-1。设此时某个猴子的新编号是i,他原来的编号就是(i+a[1])%n。于是,这便形成了一个递归问题。假如知道了这个子问题(n-1个猴子)的解是x,那么原问题(n个猴子)的解便是:(x+m%n)%n=(x+m)%n。问题的起始条件:如果n=1,那么结果就是1。

function yuesefu($n,$m) {
  $r=0;
  for($i=2; $i<=$n; $i++) {
    $r=($r+$m)%$i;
  }
  return $r+1;
}
echo yuesefu(10,3)."是猴王";

运行结果:

4是猴王

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《PHP程序设计算法总结》、《PHP字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结》

希望本文所述对大家PHP程序设计有所帮助。

原文链接:https://www.f2er.com/php/534456.html

猜你在找的PHP相关文章