我有一个交易表:
Transactions
------------
id | account | type | date_time | amount
----------------------------------------------------
1 | 001 | 'R' | '2012-01-01 10:01:00' | 1000
2 | 003 | 'R' | '2012-01-02 12:53:10' | 1500
3 | 003 | 'A' | '2012-01-03 13:10:01' | -1500
4 | 002 | 'R' | '2012-01-03 17:56:00' | 2000
5 | 001 | 'R' | '2012-01-04 12:30:01' | 1000
6 | 002 | 'A' | '2012-01-04 13:23:01' | -2000
7 | 003 | 'R' | '2012-01-04 15:13:10' | 3000
8 | 003 | 'R' | '2012-01-05 12:12:00' | 1250
9 | 003 | 'A' | '2012-01-06 17:24:01' | -1250
并且我希望选择所有特定类型(‘R’),但不是那些立即(按照date_time字段的顺序)为同一帐户提交的另一种类型(‘A’)的另一个交易…
因此,在前面的示例中,查询应抛出以下行:
id | account |type | date | amount
----------------------------------------------------
1 | 001 | 'R' | '2012-01-01 10:01:00' | 1000
5 | 001 | 'R' | '2012-01-04 12:30:01' | 1000
7 | 003 | 'R' | '2012-01-04 15:13:10' | 3000
(如您所见,第2行未显示,因为第3行’取消’它…第4行’第4行被’取消’;行7确实出现(即使帐户003属于已取消的第2行),这次在第7行,它没有被任何’A’行取消;并且第8行也不会出现(它也是003帐户,因为现在这个被9取消,这也不会取消7,只是前一个一:8 ……
我在Where子句中尝试了Joins,子查询,但我真的不确定如何进行查询…
我尝试过的:
尝试加入:
SELECT trans.type as type,trans.amount as amount,trans.date_time as dt,trans.account as acct,FROM Transactions trans
INNER JOIN ( SELECT t.type AS type,t.acct AS acct,t.date_time AS date_time
FROM Transactions t
WHERE t.date_time > trans.date_time
ORDER BY t.date_time DESC
) AS nextTrans
ON nextTrans.acct = trans.acct
WHERE trans.type IN ('R')
AND nextTrans.type NOT IN ('A')
ORDER BY DATE(trans.date_time) ASC
这会引发错误,因为我无法将外部值引入MysqL中的JOIN.
在以下位置尝试子查询:
SELECT trans.type as type,FROM Transactions trans
WHERE trans.type IN ('R')
AND trans.datetime <
( SELECT t.date_time AS date_time
FROM Transactions t
WHERE t.account = trans.account
ORDER BY t.date_time DESC
) AS nextTrans
ON nextTrans.acct = trans.acct
ORDER BY DATE(trans.date_time) ASC
这是错误的,我可以将外部值引入MysqL中的WHERE,但我无法找到正确过滤我需要的方法…
重要编辑:
我设法实现了解决方案,但现在需要认真优化.这里是:
SELECT *
FROM (SELECT t1.*,tFlagged.id AS cancId,tFlagged.type AS cancFlag
FROM transactions t1
LEFT JOIN (SELECT t2.*
FROM transactions t2
ORDER BY t2.date_time ASC ) tFlagged
ON (t1.account=tFlagged.account
AND
t1.date_time < tFlagged.date_time)
WHERE t1.type = 'R'
GROUP BY t1.id) tCanc
WHERE tCanc.cancFlag IS NULL
OR tCanc.cancFlag <> 'A'
我自己加入了这个表,只考虑了相同的帐户和很棒的date_time. Join按date_time排序.按ID分组我设法只获得了连接的第一个结果,这恰好是同一帐户的下一个事务.
然后在外部选择上,我过滤掉那些具有“A”的东西,因为这意味着下一个交易实际上是对它的取消.换句话说,如果同一个帐户没有下一个交易,或者下一个交易是’R’,那么它不会被取消,并且必须在结果中显示…
我懂了:
+----+---------+------+---------------------+--------+--------+----------+
| id | account | type | date_time | amount | cancId | cancFlag |
+----+---------+------+---------------------+--------+--------+----------+
| 1 | 001 | R | 2012-01-01 10:01:00 | 1000 | 5 | R |
| 5 | 001 | R | 2012-01-04 12:30:01 | 1000 | NULL | NULL |
| 7 | 003 | R | 2012-01-04 15:13:10 | 3000 | 8 | R |
+----+---------+------+---------------------+--------+--------+----------+
它将每个交易与下一个交易关联到同一个帐户,然后筛选出已取消的交易…成功!!
正如我所说,现在的问题是优化.我的真实数据有很多行(因为预计会有时间跨越事务的表),而对于现在约有10,000行的表,我在1分44秒内得到了一个积极的结果.我想这就是加入的东西……(对于那些在这里知道协议的人,我该怎么做?在这里发一个新问题并将其作为解决方案发布到这个?或者只是在这里等待更多答案?)
> select * from transactions order by date_time;
+----+---------+------+---------------------+--------+
| id | account | type | date_time | amount |
+----+---------+------+---------------------+--------+
| 1 | 1 | R | 2012-01-01 10:01:00 | 1000 |
| 2 | 3 | R | 2012-01-02 12:53:10 | 1500 |
| 3 | 3 | A | 2012-01-03 13:10:01 | -1500 |
| 4 | 2 | R | 2012-01-03 17:56:00 | 2000 |
| 5 | 1 | R | 2012-01-04 12:30:01 | 1000 |
| 6 | 2 | A | 2012-01-04 13:23:01 | -2000 |
| 7 | 3 | R | 2012-01-04 15:13:10 | 3000 |
| 8 | 3 | R | 2012-01-05 12:12:00 | 1250 |
| 9 | 3 | A | 2012-01-06 17:24:01 | -1250 |
| 10 | 3 | R | 2012-01-07 00:00:00 | 1250 |
| 11 | 3 | R | 2012-01-07 05:00:00 | 4000 |
| 12 | 3 | A | 2012-01-08 00:00:00 | -1250 |
| 14 | 2 | R | 2012-01-09 00:00:00 | 2000 |
| 13 | 3 | A | 2012-01-10 00:00:00 | -1500 |
| 15 | 2 | A | 2012-01-11 04:00:00 | -2000 |
| 16 | 2 | R | 2012-01-12 00:00:00 | 5000 |
+----+---------+------+---------------------+--------+
16 rows in set (0.00 sec)
首先,创建一个查询,为每个事务“获取同一帐户中该事务之前的最近事务的日期”:
SELECT t2.*,MAX(t1.date_time) AS prev_date
FROM transactions t1
JOIN transactions t2
ON (t1.account = t2.account
AND t2.date_time > t1.date_time)
GROUP BY t2.account,t2.date_time
ORDER BY t2.date_time;
+----+---------+------+---------------------+--------+---------------------+
| id | account | type | date_time | amount | prev_date |
+----+---------+------+---------------------+--------+---------------------+
| 3 | 3 | A | 2012-01-03 13:10:01 | -1500 | 2012-01-02 12:53:10 |
| 5 | 1 | R | 2012-01-04 12:30:01 | 1000 | 2012-01-01 10:01:00 |
| 6 | 2 | A | 2012-01-04 13:23:01 | -2000 | 2012-01-03 17:56:00 |
| 7 | 3 | R | 2012-01-04 15:13:10 | 3000 | 2012-01-03 13:10:01 |
| 8 | 3 | R | 2012-01-05 12:12:00 | 1250 | 2012-01-04 15:13:10 |
| 9 | 3 | A | 2012-01-06 17:24:01 | -1250 | 2012-01-05 12:12:00 |
| 10 | 3 | R | 2012-01-07 00:00:00 | 1250 | 2012-01-06 17:24:01 |
| 11 | 3 | R | 2012-01-07 05:00:00 | 4000 | 2012-01-07 00:00:00 |
| 12 | 3 | A | 2012-01-08 00:00:00 | -1250 | 2012-01-07 05:00:00 |
| 14 | 2 | R | 2012-01-09 00:00:00 | 2000 | 2012-01-04 13:23:01 |
| 13 | 3 | A | 2012-01-10 00:00:00 | -1500 | 2012-01-08 00:00:00 |
| 15 | 2 | A | 2012-01-11 04:00:00 | -2000 | 2012-01-09 00:00:00 |
| 16 | 2 | R | 2012-01-12 00:00:00 | 5000 | 2012-01-11 04:00:00 |
+----+---------+------+---------------------+--------+---------------------+
13 rows in set (0.00 sec)
将其用作子查询以使每个事务及其前任在同一行上.使用一些过滤来抽出我们感兴趣的交易 – 即’A’交易,其前身是’R’交易,它们完全取消 –
SELECT
t3.*,transactions.*
FROM
transactions
JOIN
(SELECT t2.*,MAX(t1.date_time) AS prev_date
FROM transactions t1
JOIN transactions t2
ON (t1.account = t2.account
AND t2.date_time > t1.date_time)
GROUP BY t2.account,t2.date_time) t3
ON t3.account = transactions.account
AND t3.prev_date = transactions.date_time
AND t3.type='A'
AND transactions.type='R'
AND t3.amount + transactions.amount = 0
ORDER BY t3.date_time;
+----+---------+------+---------------------+--------+---------------------+----+---------+------+---------------------+--------+
| id | account | type | date_time | amount | prev_date | id | account | type | date_time | amount |
+----+---------+------+---------------------+--------+---------------------+----+---------+------+---------------------+--------+
| 3 | 3 | A | 2012-01-03 13:10:01 | -1500 | 2012-01-02 12:53:10 | 2 | 3 | R | 2012-01-02 12:53:10 | 1500 |
| 6 | 2 | A | 2012-01-04 13:23:01 | -2000 | 2012-01-03 17:56:00 | 4 | 2 | R | 2012-01-03 17:56:00 | 2000 |
| 9 | 3 | A | 2012-01-06 17:24:01 | -1250 | 2012-01-05 12:12:00 | 8 | 3 | R | 2012-01-05 12:12:00 | 1250 |
| 15 | 2 | A | 2012-01-11 04:00:00 | -2000 | 2012-01-09 00:00:00 | 14 | 2 | R | 2012-01-09 00:00:00 | 2000 |
+----+---------+------+---------------------+--------+---------------------+----+---------+------+---------------------+--------+
4 rows in set (0.00 sec)
从上面的结果可以看出我们几乎就在那里 – 我们已经确定了不需要的交易.使用LEFT JOIN,我们可以从整个事务集中筛选出这些:
SELECT
transactions.*
FROM
transactions
LEFT JOIN
(SELECT
transactions.id
FROM
transactions
JOIN
(SELECT t2.*,MAX(t1.date_time) AS prev_date
FROM transactions t1
JOIN transactions t2
ON (t1.account = t2.account
AND t2.date_time > t1.date_time)
GROUP BY t2.account,t2.date_time) t3
ON t3.account = transactions.account
AND t3.prev_date = transactions.date_time
AND t3.type='A'
AND transactions.type='R'
AND t3.amount + transactions.amount = 0) t4
USING(id)
WHERE t4.id IS NULL
AND transactions.type = 'R'
ORDER BY transactions.date_time;
+----+---------+------+---------------------+--------+
| id | account | type | date_time | amount |
+----+---------+------+---------------------+--------+
| 1 | 1 | R | 2012-01-01 10:01:00 | 1000 |
| 5 | 1 | R | 2012-01-04 12:30:01 | 1000 |
| 7 | 3 | R | 2012-01-04 15:13:10 | 3000 |
| 10 | 3 | R | 2012-01-07 00:00:00 | 1250 |
| 11 | 3 | R | 2012-01-07 05:00:00 | 4000 |
| 16 | 2 | R | 2012-01-12 00:00:00 | 5000 |
+----+---------+------+---------------------+--------+