JavaScript SHA512加密算法详细代码
- Configurable variables. You may need to tweak these to be compatible with
- the server-side,but the defaults work in most cases.
/
var hexcase = 0; / hex output format. 0 - lowercase; 1 - uppercase /
var b64pad = ""; / base-64 pad character. "=" for strict RFC compliance */
/*
- These are the functions you'll usually want to call
- They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha512(s) { return rstr2hex(rstr_sha512(str2rstr_utf8(s))); }
function b64_sha512(s) { return rstr2b64(rstr_sha512(str2rstr_utf8(s))); }
function any_sha512(s,e) { return rstr2any(rstr_sha512(str2rstr_utf8(s)),e);}
function hex_hmac_sha512(k,d)
{ return rstr2hex(rstr_hmac_sha512(str2rstr_utf8(k),str2rstr_utf8(d))); }
function b64_hmac_sha512(k,d)
{ return rstr2b64(rstr_hmac_sha512(str2rstr_utf8(k),str2rstr_utf8(d))); }
function any_hmac_sha512(k,d,e)
{ return rstr2any(rstr_hmac_sha512(str2rstr_utf8(k),str2rstr_utf8(d)),e);}
/*
- Perform a simple self-test to see if the VM is working
*/
function sha512_vm_test()
{
return hex_sha512("abc").toLowerCase() ==
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" +
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f";
}
/*
- Calculate the SHA-512 of a raw string
/
function rstr_sha512(s)
{
return binb2rstr(binb_sha512(rstr2binb(s),s.length 8));
}
/*
- Calculate the HMAC-SHA-512 of a key and some data (raw strings)
/
function rstr_hmac_sha512(key,data)
{
var bkey = rstr2binb(key);
if(bkey.length > 32) bkey = binb_sha512(bkey,key.length 8);
var ipad = Array(32),opad = Array(32);
for(var i = 0; i < 32; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha512(ipad.concat(rstr2binb(data)),1024 + data.length * 8);
return binb2rstr(binb_sha512(opad.concat(hash),1024 + 512));
}
/*
- Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)- hex_tab.charAt( x & 0x0F);
}
return output;
}
- hex_tab.charAt( x & 0x0F);
/*
- Convert a raw string to a base-64 string
/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i 8 + j 6 > input.length 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
- Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input,encoding)
{
var divisor = encoding.length;
var i,j,q,x,quotient;
/ Convert to an array of 16-bit big-endian values,forming the dividend /
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i 2) << 8) | input.charCodeAt(i 2 + 1);
}
/*
- Repeatedly perform a long division. The binary array forms the dividend,* the length of the encoding is the divisor. Once computed,the quotient
- forms the dividend for the next step. All remainders are stored for later
- use.
/
var full_length = Math.ceil(input.length 8 /
(Math.log(encoding.length) / Math.log(2)));
var remainders = Array(full_length);
for(j = 0; j < full_length; j++)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[j] = x;
dividend = quotient;
}
/ Convert the remainders to the output string /
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
return output;
}
/*
- Encode a string as utf-8.
- For efficiency,this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x,y;
while(++i < input.length)
{
/ Decode utf-16 surrogate pairs /
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/ Encode output as utf-8 /
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),0x80 | ((x >>> 6 ) & 0x3F),0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),0x80 | ((x >>> 12) & 0x3F),0x80 | ( x & 0x3F));
}
return output;
}
/*
- Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,input.charCodeAt(i) & 0xFF);
return output;
}
/*
- Convert a raw string to an array of big-endian words
- Characters >255 have their high-byte silently ignored.
/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/*
- Convert an array of big-endian words to a string
/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
- Calculate the SHA-512 of an array of big-endian dwords,and a bit length
*/
var sha512_k;
function binb_sha512(x,len)
{
if(sha512_k == undefined)
{
//SHA512 constants
sha512_k = new Array(
new int64(0x428a2f98,-685199838),new int64(0x71374491,0x23ef65cd),new int64(-1245643825,-330482897),new int64(-373957723,-2121671748),new int64(0x3956c25b,-213338824),new int64(0x59f111f1,-1241133031),new int64(-1841331548,-1357295717),new int64(-1424204075,-630357736),new int64(-670586216,-1560083902),new int64(0x12835b01,0x45706fbe),new int64(0x243185be,0x4ee4b28c),new int64(0x550c7dc3,-704662302),new int64(0x72be5d74,-226784913),new int64(-2132889090,0x3b1696b1),new int64(-1680079193,0x25c71235),new int64(-1046744716,-815192428),new int64(-459576895,-1628353838),new int64(-272742522,0x384f25e3),new int64(0xfc19dc6,-1953704523),new int64(0x240ca1cc,0x77ac9c65),new int64(0x2de92c6f,0x592b0275),new int64(0x4a7484aa,0x6ea6e483),new int64(0x5cb0a9dc,-1119749164),new int64(0x76f988da,-2096016459),new int64(-1740746414,-295247957),new int64(-1473132947,0x2db43210),new int64(-1341970488,-1728372417),new int64(-1084653625,-1091629340),new int64(-958395405,0x3da88fc2),new int64(-710438585,-1828018395),new int64(0x6ca6351,-536640913),new int64(0x14292967,0xa0e6e70),new int64(0x27b70a85,0x46d22ffc),new int64(0x2e1b2138,0x5c26c926),new int64(0x4d2c6dfc,0x5ac42aed),new int64(0x53380d13,-1651133473),new int64(0x650a7354,-1951439906),new int64(0x766a0abb,0x3c77b2a8),new int64(-2117940946,0x47edaee6),new int64(-1838011259,0x1482353b),new int64(-1564481375,0x4cf10364),new int64(-1474664885,-1136513023),new int64(-1035236496,-789014639),new int64(-949202525,0x654be30),new int64(-778901479,-688958952),new int64(-694614492,0x5565a910),new int64(-200395387,0x5771202a),new int64(0x106aa070,0x32bbd1b8),new int64(0x19a4c116,-1194143544),new int64(0x1e376c08,0x5141ab53),new int64(0x2748774c,-544281703),new int64(0x34b0bcb5,-509917016),new int64(0x391c0cb3,-976659869),new int64(0x4ed8aa4a,-482243893),new int64(0x5b9cca4f,0x7763e373),new int64(0x682e6ff3,-692930397),new int64(0x748f82ee,0x5defb2fc),new int64(0x78a5636f,0x43172f60),new int64(-2067236844,-1578062990),new int64(-1933114872,0x1a6439ec),new int64(-1866530822,0x23631e28),new int64(-1538233109,-561857047),new int64(-1090935817,-1295615723),new int64(-965641998,-479046869),new int64(-903397682,-366583396),new int64(-779700025,0x21c0c207),new int64(-354779690,-840897762),new int64(-176337025,-294727304),new int64(0x6f067aa,0x72176fba),new int64(0xa637dc5,-1563912026),new int64(0x113f9804,-1090974290),new int64(0x1b710b35,0x131c471b),new int64(0x28db77f5,0x23047d84),new int64(0x32caab7b,0x40c72493),new int64(0x3c9ebe0a,0x15c9bebc),new int64(0x431d67c4,-1676669620),new int64(0x4cc5d4be,-885112138),new int64(0x597f299c,-60457430),new int64(0x5fcb6fab,0x3ad6faec),new int64(0x6c44198c,0x4a475817));
}
//Initial hash values
var H = new Array(
new int64(0x6a09e667,-205731576),new int64(-1150833019,-2067093701),new int64(0x3c6ef372,-23791573),new int64(-1521486534,0x5f1d36f1),new int64(0x510e527f,-1377402159),new int64(-1694144372,0x2b3e6c1f),new int64(0x1f83d9ab,-79577749),new int64(0x5be0cd19,0x137e2179));
var T1 = new int64(0,0),T2 = new int64(0,a = new int64(0,b = new int64(0,c = new int64(0,d = new int64(0,e = new int64(0,f = new int64(0,g = new int64(0,h = new int64(0,//Temporary variables not specified by the document
s0 = new int64(0,s1 = new int64(0,Ch = new int64(0,Maj = new int64(0,r1 = new int64(0,r2 = new int64(0,r3 = new int64(0,0);
var j,i;
var W = new Array(80);
for(i=0; i<80; i++)
W[i] = new int64(0,0);
// append padding to the source string. The format is described in the FIPS.
x[len >> 5] |= 0x80 << (24 - (len & 0x1f));
x[((len + 128 >> 10)<< 5) + 31] = len;
for(i = 0; i<x.length; i+=32) //32 dwords is the block size
{
int64copy(a,H[0]);
int64copy(b,H[1]);
int64copy(c,H[2]);
int64copy(d,H[3]);
int64copy(e,H[4]);
int64copy(f,H[5]);
int64copy(g,H[6]);
int64copy(h,H[7]);
for(j=0; j<16; j++)
{
W[j].h = x[i + 2j];
W[j].l = x[i + 2j + 1];
}
for(j=16; j<80; j++)
{
//sigma1
int64rrot(r1,W[j-2],19);
int64revrrot(r2,29);
int64shr(r3,6);
s1.l = r1.l ^ r2.l ^ r3.l;
s1.h = r1.h ^ r2.h ^ r3.h;
//sigma0
int64rrot(r1,W[j-15],1);
int64rrot(r2,8);
int64shr(r3,7);
s0.l = r1.l ^ r2.l ^ r3.l;
s0.h = r1.h ^ r2.h ^ r3.h;
int64add4(W[j],s1,W[j-7],s0,W[j-16]);
}
for(j = 0; j < 80; j++)
{
//Ch
Ch.l = (e.l & f.l) ^ (~e.l & g.l);
Ch.h = (e.h & f.h) ^ (~e.h & g.h);
//Sigma1
int64rrot(r1,e,14);
int64rrot(r2,18);
int64revrrot(r3,9);
s1.l = r1.l ^ r2.l ^ r3.l;
s1.h = r1.h ^ r2.h ^ r3.h;
//Sigma0
int64rrot(r1,a,28);
int64revrrot(r2,2);
int64revrrot(r3,7);
s0.l = r1.l ^ r2.l ^ r3.l;
s0.h = r1.h ^ r2.h ^ r3.h;
//Maj
Maj.l = (a.l & b.l) ^ (a.l & c.l) ^ (b.l & c.l);
Maj.h = (a.h & b.h) ^ (a.h & c.h) ^ (b.h & c.h);
int64add5(T1,h,Ch,sha512_k[j],W[j]);
int64add(T2,Maj);
int64copy(h,g);
int64copy(g,f);
int64copy(f,e);
int64add(e,T1);
int64copy(d,c);
int64copy(c,b);
int64copy(b,a);
int64add(a,T1,T2);
}
int64add(H[0],H[0],a);
int64add(H[1],H[1],b);
int64add(H[2],H[2],c);
int64add(H[3],H[3],d);
int64add(H[4],H[4],e);
int64add(H[5],H[5],f);
int64add(H[6],H[6],g);
int64add(H[7],H[7],h);
}
//represent the hash as an array of 32-bit dwords
var hash = new Array(16);
for(i=0; i<8; i++)
{
hash[2i] = H[i].h;
hash[2i + 1] = H[i].l;
}
return hash;
}
//A constructor for 64-bit numbers
function int64(h,l)
{
this.h = h;
this.l = l;
//this.toString = int64toString;
}
//Copies src into dst,assuming both are 64-bit numbers
function int64copy(dst,src)
{
dst.h = src.h;
dst.l = src.l;
}
//Right-rotates a 64-bit number by shift
//Won't handle cases of shift>=32
//The function revrrot() is for that
function int64rrot(dst,shift)
{
dst.l = (x.l >>> shift) | (x.h << (32-shift));
dst.h = (x.h >>> shift) | (x.l << (32-shift));
}
//Reverses the dwords of the source and then rotates right by shift.
//This is equivalent to rotation by 32+shift
function int64revrrot(dst,shift)
{
dst.l = (x.h >>> shift) | (x.l << (32-shift));
dst.h = (x.l >>> shift) | (x.h << (32-shift));
}
//Bitwise-shifts right a 64-bit number by shift
//Won't handle shift>=32,but it's never needed in SHA512
function int64shr(dst,shift)
{
dst.l = (x.l >>> shift) | (x.h << (32-shift));
dst.h = (x.h >>> shift);
}
//Adds two 64-bit numbers
//Like the original implementation,does not rely on 32-bit operations
function int64add(dst,y)
{
var w0 = (x.l & 0xffff) + (y.l & 0xffff);
var w1 = (x.l >>> 16) + (y.l >>> 16) + (w0 >>> 16);
var w2 = (x.h & 0xffff) + (y.h & 0xffff) + (w1 >>> 16);
var w3 = (x.h >>> 16) + (y.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
//Same,except with 4 addends. Works faster than adding them one by one.
function int64add4(dst,b,c,d)
{
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff);
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (w0 >>> 16);
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (w1 >>> 16);
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
//Same,except with 5 addends
function int64add5(dst,e)
{
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff) + (e.l & 0xffff);
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (e.l >>> 16) + (w0 >>> 16);
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (e.h & 0xffff) + (w1 >>> 16);
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (e.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
@H_403_23@
SHR256加密算法
- Configurable variables. You may need to tweak these to be compatible with
- the server-side,but the defaults work in most cases.
/
var hexcase = 0; / hex output format. 0 - lowercase; 1 - uppercase /
var b64pad = ""; / base-64 pad character. "=" for strict RFC compliance */
/*
- These are the functions you'll usually want to call
- They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
function any_sha256(s,e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)),e); }
function hex_hmac_sha256(k,d)
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k),str2rstr_utf8(d))); }
function b64_hmac_sha256(k,d)
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k),str2rstr_utf8(d))); }
function any_hmac_sha256(k,e)
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k),e); }
/*
- Perform a simple self-test to see if the VM is working
*/
function sha256_vm_test()
{
return hex_sha256("abc").toLowerCase() ==
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
}
/*
- Calculate the sha256 of a raw string
/
function rstr_sha256(s)
{
return binb2rstr(binb_sha256(rstr2binb(s),s.length 8));
}
/*
- Calculate the HMAC-sha256 of a key and some data (raw strings)
/
function rstr_hmac_sha256(key,data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha256(bkey,key.length 8);
var ipad = Array(16),opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha256(ipad.concat(rstr2binb(data)),512 + data.length * 8);
return binb2rstr(binb_sha256(opad.concat(hash),512 + 256));
}
/*
- Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)- hex_tab.charAt( x & 0x0F);
}
return output;
}
- hex_tab.charAt( x & 0x0F);
/*
- Convert a raw string to a base-64 string
/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i 8 + j 6 > input.length 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
- Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input,encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i,quotient;
/ Convert to an array of 16-bit big-endian values,forming the dividend /
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i 2) << 8) | input.charCodeAt(i 2 + 1);
}
/*
- Repeatedly perform a long division. The binary array forms the dividend,the quotient
- forms the dividend for the next step. We stop when the dividend is zero.
- All remainders are stored for later use.
/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/ Convert the remainders to the output string /
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/ Append leading zero equivalents /
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/*
- Encode a string as utf-8.
- For efficiency,y;
while(++i < input.length)
{
/ Decode utf-16 surrogate pairs /
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/ Encode output as utf-8 /
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),0x80 | ( x & 0x3F));
}
return output;
}
/*
- Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,input.charCodeAt(i) & 0xFF);
return output;
}
/*
- Convert a raw string to an array of big-endian words
- Characters >255 have their high-byte silently ignored.
/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/*
- Convert an array of big-endian words to a string
/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
- Main sha256 function,with its support functions
*/
function sha256_S (X,n) {return ( X >>> n ) | (X << (32 - n));}
function sha256_R (X,n) {return ( X >>> n );}
function sha256_Ch(x,y,z) {return ((x & y) ^ ((~x) & z));}
function sha256_Maj(x,z) {return ((x & y) ^ (x & z) ^ (y & z));}
function sha256_Sigma0256(x) {return (sha256_S(x,2) ^ sha256_S(x,13) ^ sha256_S(x,22));}
function sha256_Sigma1256(x) {return (sha256_S(x,6) ^ sha256_S(x,11) ^ sha256_S(x,25));}
function sha256_Gamma0256(x) {return (sha256_S(x,7) ^ sha256_S(x,18) ^ sha256_R(x,3));}
function sha256_Gamma1256(x) {return (sha256_S(x,17) ^ sha256_S(x,19) ^ sha256_R(x,10));}
function sha256_Sigma0512(x) {return (sha256_S(x,28) ^ sha256_S(x,34) ^ sha256_S(x,39));}
function sha256_Sigma1512(x) {return (sha256_S(x,14) ^ sha256_S(x,18) ^ sha256_S(x,41));}
function sha256_Gamma0512(x) {return (sha256_S(x,1) ^ sha256_S(x,8) ^ sha256_R(x,7));}
function sha256_Gamma1512(x) {return (sha256_S(x,19) ^ sha256_S(x,61) ^ sha256_R(x,6));}
var sha256_K = new Array
(
1116352408,1899447441,-1245643825,-373957723,961987163,1508970993,-1841331548,-1424204075,-670586216,310598401,607225278,1426881987,1925078388,-2132889090,-1680079193,-1046744716,-459576895,-272742522,264347078,604807628,770255983,1249150122,1555081692,1996064986,-1740746414,-1473132947,-1341970488,-1084653625,-958395405,-710438585,113926993,338241895,666307205,773529912,1294757372,1396182291,1695183700,1986661051,-2117940946,-1838011259,-1564481375,-1474664885,-1035236496,-949202525,-778901479,-694614492,-200395387,275423344,430227734,506948616,659060556,883997877,958139571,1322822218,1537002063,1747873779,1955562222,2024104815,-2067236844,-1933114872,-1866530822,-1538233109,-1090935817,-965641998
);
function binb_sha256(m,l)
{
var HASH = new Array(1779033703,-1150833019,1013904242,-1521486534,1359893119,-1694144372,528734635,1541459225);
var W = new Array(64);
var a,f,g,h;
var i,T2;
/ append padding /
m[l >> 5] |= 0x80 << (24 - l % 32);
m[((l + 64 >> 9) << 4) + 15] = l;
for(i = 0; i < m.length; i += 16)
{
a = HASH[0];
b = HASH[1];
c = HASH[2];
d = HASH[3];
e = HASH[4];
f = HASH[5];
g = HASH[6];
h = HASH[7];
for(j = 0; j < 64; j++)
{
if (j < 16) W[j] = m[j + i];
else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]),W[j - 7]),sha256_Gamma0256(W[j - 15])),W[j - 16]);
T1 = safe_add(safe_add(safe_add(safe_add(h,sha256_Sigma1256(e)),sha256_Ch(e,g)),sha256_K[j]),W[j]);
T2 = safe_add(sha256_Sigma0256(a),sha256_Maj(a,c));
h = g;
g = f;
f = e;
e = safe_add(d,T1);
d = c;
c = b;
b = a;
a = safe_add(T1,T2);
}
HASH[0] = safe_add(a,HASH[0]);
HASH[1] = safe_add(b,HASH[1]);
HASH[2] = safe_add(c,HASH[2]);
HASH[3] = safe_add(d,HASH[3]);
HASH[4] = safe_add(e,HASH[4]);
HASH[5] = safe_add(f,HASH[5]);
HASH[6] = safe_add(g,HASH[6]);
HASH[7] = safe_add(h,HASH[7]);
}
return HASH;
}
function safeadd (x,y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}@H403_23@