本文实例为大家介绍了JavaScript SHA1加密算法吗,供大家参考,具体内容如下
- Configurable variables. You may need to tweak these to be compatible with
- the server-side,but the defaults work in most cases.
/
var hexcase = 0; / hex output format. 0 - lowercase; 1 - uppercase /
var b64pad = ""; / base-64 pad character. "=" for strict RFC compliance */
/*
- These are the functions you'll usually want to call
- They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
function any_sha1(s,e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)),e); }
function hex_hmac_sha1(k,d)
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k),str2rstr_utf8(d))); }
function b64_hmac_sha1(k,d)
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k),str2rstr_utf8(d))); }
function any_hmac_sha1(k,d,e)
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k),str2rstr_utf8(d)),e); }
/*
- Perform a simple self-test to see if the VM is working
*/
function sha1_vm_test()
{
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
/*
- Calculate the SHA1 of a raw string
/
function rstr_sha1(s)
{
return binb2rstr(binb_sha1(rstr2binb(s),s.length 8));
}
/*
- Calculate the HMAC-SHA1 of a key and some data (raw strings)
/
function rstr_hmac_sha1(key,data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha1(bkey,key.length 8);
var ipad = Array(16),opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)),512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash),512 + 160));
}
/*
- Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)- hex_tab.charAt( x & 0x0F);
}
return output;
}
- hex_tab.charAt( x & 0x0F);
/*
- Convert a raw string to a base-64 string
/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i 8 + j 6 > input.length 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
- Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input,encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i,q,x,quotient;
/ Convert to an array of 16-bit big-endian values,forming the dividend /
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i 2) << 8) | input.charCodeAt(i 2 + 1);
}
/*
- Repeatedly perform a long division. The binary array forms the dividend,* the length of the encoding is the divisor. Once computed,the quotient
- forms the dividend for the next step. We stop when the dividend is zero.
- All remainders are stored for later use.
/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/ Convert the remainders to the output string /
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/ Append leading zero equivalents /
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/*
- Encode a string as utf-8.
- For efficiency,this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x,y;
while(++i < input.length)
{
/ Decode utf-16 surrogate pairs /
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/ Encode output as utf-8 /
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),0x80 | ((x >>> 6 ) & 0x3F),0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),0x80 | ((x >>> 12) & 0x3F),0x80 | ( x & 0x3F));
}
return output;
}
/*
- Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,input.charCodeAt(i) & 0xFF);
return output;
}
/*
- Convert a raw string to an array of big-endian words
- Characters >255 have their high-byte silently ignored.
/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/*
- Convert an array of big-endian words to a string
/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
- Calculate the SHA-1 of an array of big-endian words,and a bit length
/
function binb_sha1(x,len)
{
/ append padding */
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16],1);
var t = safe_add(safe_add(bit_rol(a,5),sha1_ft(j,b,c,d)),safe_add(safe_add(e,w[j]),sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b,30);
b = a;
a = t;
}
a = safe_add(a,olda);
b = safe_add(b,oldb);
c = safe_add(c,oldc);
d = safe_add(d,oldd);
e = safe_add(e,olde);
}
return Array(a,e);
}
/*
- Perform the appropriate triplet combination function for the current
- iteration
*/
function sha1_ft(t,d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
/*
- Determine the appropriate additive constant for the current iteration
*/
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
/*
- Add integers,wrapping at 2^32. This uses 16-bit operations internally
- to work around bugs in some JS interpreters.
*/
function safe_add(x,y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
- Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num,cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}