for (int a0 = 0; a0 < t; a0++) { String line = reader.readLine(); String[] ls = line.split(" "); int i = Integer.parseInt(ls[0]); int j = Integer.parseInt(ls[1]); int min = width[i]; for (int k = i + 1; k <= j; k++) { if (min > width[k]) { min = width[k]; } } writer.write(min + ""); writer.newLine(); }
当我提取一个新的方法来找到最小值时,执行时间是快4倍(约2.5秒).
for (int a0 = 0; a0 < t; a0++) { String line = reader.readLine(); String[] ls = line.split(" "); int i = Integer.parseInt(ls[0]); int j = Integer.parseInt(ls[1]); int min = getMin(i,j); writer.write(min + ""); writer.newLine(); } private int getMin(int i,int j) { int min = width[i]; for (int k = i + 1; k <= j; k++) { if (min > width[k]) { min = width[k]; } } return min; }
我一直认为方法调用很慢.但这个例子显示相反. Java 6也演示了这一点,但是在这两种情况下(17秒和10秒),执行时间要慢得多.有人可以提供一些洞察力吗?
解决方法
TL;DR JIT compiler has more opportunities to optimize the inner loop in the second case,because on-stack replacement happens at the different point.
我已经设法通过减少的测试用例来重现问题.
没有涉及到I / O或字符串操作,只有两个带有数组访问的嵌套循环.
public class NestedLoop { private static final int ARRAY_SIZE = 5000; private static final int ITERATIONS = 1000000; private int[] width = new java.util.Random(0).ints(ARRAY_SIZE).toArray(); public long inline() { long sum = 0; for (int i = 0; i < ITERATIONS; i++) { int min = width[0]; for (int k = 1; k < ARRAY_SIZE; k++) { if (min > width[k]) { min = width[k]; } } sum += min; } return sum; } public long methodCall() { long sum = 0; for (int i = 0; i < ITERATIONS; i++) { int min = getMin(); sum += min; } return sum; } private int getMin() { int min = width[0]; for (int k = 1; k < ARRAY_SIZE; k++) { if (min > width[k]) { min = width[k]; } } return min; } public static void main(String[] args) { long startTime = System.nanoTime(); long sum = new NestedLoop().inline(); // or .methodCall(); long endTime = System.nanoTime(); long ms = (endTime - startTime) / 1000000; System.out.println("sum = " + sum + ",time = " + ms + " ms"); } }
内联变体确实比methodCall慢3-4倍.
我已经使用以下JVM选项来确认两个基准是在最高层编译的,并且在这两种情况下都会成功发生OSR (on-stack replacement).
-XX:-TieredCompilation -XX:CompileOnly=NestedLoop -XX:+UnlockDiagnosticVMOptions -XX:+PrintCompilation -XX:+TraceNMethodInstalls
‘inline’编译日志:
251 46 % NestedLoop::inline @ 21 (70 bytes) Installing osr method (4) NestedLoop.inline()J @ 21
‘methodCall’编译日志:
271 46 NestedLoop::getMin (41 bytes) Installing method (4) NestedLoop.getMin()I 274 47 % NestedLoop::getMin @ 9 (41 bytes) Installing osr method (4) NestedLoop.getMin()I @ 9 314 48 % NestedLoop::methodCall @ 4 (30 bytes) Installing osr method (4) NestedLoop.methodCall()J @ 4
这意味着JIT执行其任务,但生成的代码必须不同.
我们来分析一下-XX:PrintAssembly.
‘inline’反汇编(最热的片段)
0x0000000002df4dd0: inc %ebp ; OopMap{r11=Derived_oop_rbx rbx=Oop off=114} ;*goto ; - NestedLoop::inline@53 (line 12) 0x0000000002df4dd2: test %eax,-0x1d64dd8(%rip) # 0x0000000001090000 ;*iload ; - NestedLoop::inline@21 (line 12) ; {poll} 0x0000000002df4dd8: cmp $0x1388,%ebp 0x0000000002df4dde: jge 0x0000000002df4dfd ;*if_icmpge ; - NestedLoop::inline@26 (line 12) 0x0000000002df4de0: test %rbx,%rbx 0x0000000002df4de3: je 0x0000000002df4e4c 0x0000000002df4de5: mov (%r11),%r10d ;*getfield width ; - NestedLoop::inline@32 (line 13) 0x0000000002df4de8: mov 0xc(%r10),%r9d ; implicit exception 0x0000000002df4dec: cmp %r9d,%ebp 0x0000000002df4def: jae 0x0000000002df4e59 0x0000000002df4df1: mov 0x10(%r10,%rbp,4),%r8d ;*iaload ; - NestedLoop::inline@37 (line 13) 0x0000000002df4df6: cmp %r8d,%r13d 0x0000000002df4df9: jg 0x0000000002df4dc6 ;*if_icmple ; - NestedLoop::inline@38 (line 13) 0x0000000002df4dfb: jmp 0x0000000002df4dd0
‘methodCall’反汇编(也是最热的部分)
0x0000000002da2af0: add $0x8,%edx ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2af3: cmp $0x1381,%edx 0x0000000002da2af9: jge 0x0000000002da2b70 ;*iload_1 ; - NestedLoop::getMin@16 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2afb: mov 0x10(%r9,%rdx,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b00: cmp %r11d,%ecx 0x0000000002da2b03: jg 0x0000000002da2b6b ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b05: mov 0x14(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b0a: cmp %r11d,%ecx 0x0000000002da2b0d: jg 0x0000000002da2b5c ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b0f: mov 0x18(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b14: cmp %r11d,%ecx 0x0000000002da2b17: jg 0x0000000002da2b4d ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b19: mov 0x1c(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b1e: cmp %r11d,%ecx 0x0000000002da2b21: jg 0x0000000002da2b66 ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b23: mov 0x20(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b28: cmp %r11d,%ecx 0x0000000002da2b2b: jg 0x0000000002da2b61 ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b2d: mov 0x24(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b32: cmp %r11d,%ecx 0x0000000002da2b35: jg 0x0000000002da2b52 ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b37: mov 0x28(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b3c: cmp %r11d,%ecx 0x0000000002da2b3f: jg 0x0000000002da2b57 ;*iinc ; - NestedLoop::getMin@33 (line 36) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b41: mov 0x2c(%r9,%r11d ;*iaload ; - NestedLoop::getMin@22 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b46: cmp %r11d,%ecx 0x0000000002da2b49: jg 0x0000000002da2ae6 ;*if_icmple ; - NestedLoop::getMin@23 (line 37) ; - NestedLoop::methodCall@11 (line 27) 0x0000000002da2b4b: jmp 0x0000000002da2af0
编译代码完全不同; methodCall优化得更好.
循环有8次迭代;
>里面没有数组边界检查;
> width字段缓存在寄存器中.
相反,内联变体
>不循环展开;
每次从内存中加载宽度数组;
>对每次迭代执行数组边界检查.
OSR编译的方法并不总是被很好地优化,因为它们必须在转换点处保持解释堆栈帧的状态.这是another example的同样的问题.
堆叠替换通常发生在后向分支(即,循环的底部)处. inline方法有两个嵌套循环,OSR发生在内部循环内,而methodCall只有一个外部循环.外部循环中的OSR转换更有利,因为JIT编译器有更多的自由来优化内部循环.这正是你的情况发生的.