Centos6安装TensorFlow及TensorFlowOnSpark

前端之家收集整理的这篇文章主要介绍了Centos6安装TensorFlow及TensorFlowOnSpark前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

1. 需求描述

在Centos6系统上安装Hadoop、Spark集群,并使用TensorFlowOnSpark的 YARN运行模式下执行TensorFlow的代码。(最好可以在不联网的集群中进行配置并运行)

2. 系统环境(拓扑)

操作系统:Centos6.5 Final ; Hadoop:2.7.4 ; Spark:1.5.1-Hadoop2.6; TensorFlow 1.3.0;TensorFlowOnSpark (github最新下载);Python:2.7.12;

s0.centos.com: memory:1.5G namenode/resourcemanager ; 1核
s1.centos.com / s2.centos.com/ s3.centos.com : datanode/nodemanager ; memory: 1.2G, 1 核

其中yarn-site.xml 部分配置如下(参考默认的,TensorFlowonspark运行不起来):
<property>
                <name>yarn.scheduler.maximum-allocation-mb</name>
                <value>2048</value>
            </property>
        <property>
                <name>yarn.nodemanager.resource.memory-mb</name>
                <value>2048</value>
        </property>
        <property>
                <name>yarn.nodemanager.resource.cpu-vcores</name>
                        <value>2</value>
                            </property>

3. 参考

https://blog.abysm.org/2016/06/building-tensorflow-centos-6/: Centos6 build TensorFlow

TensorFlow github wiki :https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_YARN ; installTensorFlowOnSpark ;

TensorFlow github wiki: https://github.com/yahoo/TensorFlowOnSpark/wiki/Conversion-Guide ;conversionTensorFlow code ;


4. 步骤

步骤如下:

详细步骤如下:

1.安装devtoolset-6 及Python:

安装repo库: yum install -y centos-release-scl
安装 devtoolset:  yum install -y devtoolset-6 

安装Python:
yum install python27 python27-numpy python27-python-devel python27-python-wheel
安装一些常用包:
yum install –y vim zip unzip openssh-clients

2.下载bazel,这里下载的是0.5.1(虽然也下载了0.4.X的版本,下载包难下)

先执行:
export CC=/opt/rh/devtoolset-6/root/usr/bin/gcc
接着进入编译环境:
scl enable devtoolset-6 python27 bash
接着以此执行:
 unzip bazel-0.5.1-dist.zip -d bazel-0.5.1-dist
cd bazel-0.5.1-dist

# compile
./compile.sh
 
# install
mkdir -p ~/bin
cp output/bazel ~/bin/

exit  //退出scl环境
// 耗时较久

3.下载TensorFlow1.3.0源码并解压

4.进入tensorflow-1.3.0 ,修改tensorflow/tensorflow.bzl文件中的tf_extension_linkopts函数如下形式:(添加一个-lrt)

def tf_extension_linkopts():
  return ["-lrt"]  # No extension link opts

5.编译安装TensorFlow:

安装基本软件: yum install –y patch
接着,进入编译环境:
scl enable devtoolset-6 python27 bash
cd tensorflow-1.3.0
./configure
 
# build
~/bin/bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
exit // 退出编译环境
// 耗时同样很久,同样使用bazel0.4.X的版本编译TensorFlow1.3提示版本过低

编译后在/tmp/tensorflow_pkg则会生成一个TensorFlow的 安装包 ,并且是属于当前系统也就是Centos系统的安装包;
http://download.csdn.net/download/fansy1990/10042475 <<--- whl安装包下载地址
由于不想让现有的系统过于复杂,也就是直接在每个节点安装Python,然后安装TensorFlow等相关 Python包,所以参考TensorFlow on spark 官网进行,如下步骤:

6.安装Python自定义包(保持在联网状态下);

由于想在未联网的情况下使用TensorFlow以及TensorFlowOnSpark,所以参考TensorFlowOnSpark github WIKI,直接编译一个Python包,并且把TensorFlow、TensorFlowOnSpark及其他常用module安装在这个Python包中,后面就可以直接把这个包上传到HDFS,使得各个子节点都可以共享共同一个Python.zip包的环境变量。

export PYTHON_ROOT=~/Python // 设置环境变量,并下载Python
curl -O https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz
tar -xvf Python-2.7.12.tgz

编译并安装Python:

pushd Python-2.7.12
./configure --prefix="${PYTHON_ROOT}" --enable-unicode=ucs4
make
make install
popd

安装Pip:
pushd "${PYTHON_ROOT}"
curl -O https://bootstrap.pypa.io/get-pip.py
bin/python get-pip.py
popd

安装TensorFlow:

pushd "${PYTHON_ROOT}"
bin/pip install /tmp/tensorflow_pkg/tensorflow-1.3.0-cp27-none-linux_x86_64.whl
popd

在安装TensorFlow的时候会自动安装诸如 numpy等常用Python包;

安装TensorFlowOnSpark:
pushd "${PYTHON_ROOT}"
bin/pip install tensorflowonspark
popd


把“武装”好的Python打包并上传到HDFS:

pushd "${PYTHON_ROOT}"
zip -r Python.zip *
popd

hadoop fs -put ${PYTHON_ROOT}/Python.zip

现在就可以使用TensorFlow了;


7. 修改TensorFlow代码,比如下面的TensorFlow代码是可以在TensorFlow环境中运行的:

# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function

import numpy as np

import tensorflow as tf

X_FEATURE = 'x'  # Name of the input feature.

train_percent = 0.8


def load_data(data_file_name):
    data = np.loadtxt(open(data_file_name),delimiter=",",skiprows=0)
    return data


def data_selection(iris,train_per):
    data,target = np.hsplit(iris[np.random.permutation(iris.shape[0])],np.array([-1]))

    row_split_index = int(data.shape[0] * train_per)

    x_train,x_test = (data[1:row_split_index],data[row_split_index:])
    y_train,y_test = (target[1:row_split_index],target[row_split_index:])
    return x_train,x_test,y_train.astype(int),y_test.astype(int)


def run():
    # Load dataset.
    data_file = 'iris01.csv'
    iris = load_data(data_file)
    # x_train,y_train,y_test = model_selection.train_test_split(
    #     iris.data,iris.target,test_size=0.2,random_state=42)

    x_train,y_test = data_selection(iris,train_percent)

    # print(x_test)
    # print(y_test)

    #
    # # Build 3 layer DNN with 10,20,10 units respectively.
    feature_columns = [
        tf.feature_column.numeric_column(
            X_FEATURE,shape=np.array(x_train).shape[1:])]
    classifier = tf.estimator.DNNClassifier(
        feature_columns=feature_columns,hidden_units=[10,10],n_classes=3)
    #
    # # Train.
    train_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={X_FEATURE: x_train},y=y_train,num_epochs=None,shuffle=True)
    classifier.train(input_fn=train_input_fn,steps=200)
    #
    # # Predict.
    test_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={X_FEATURE: x_test},y=y_test,num_epochs=1,shuffle=False)
    predictions = classifier.predict(input_fn=test_input_fn)
    y_predicted = np.array(list(p['class_ids'] for p in predictions))
    y_predicted = y_predicted.reshape(np.array(y_test).shape)
    # #
    # # # score with sklearn.
    # score = metrics.accuracy_score(y_test,y_predicted)
    # print('Accuracy (sklearn): {0:f}'.format(score))
    print(np.concatenate(( y_predicted,y_test),axis= 1))
    # score with tensorflow.
    scores = classifier.evaluate(input_fn=test_input_fn)
    print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy']))

    print(classifier.params)


if __name__ == '__main__':
    run()

其中iris01.csv 数据如下:
5.1,3.5,1.4,0.2,0
4.9,3.0,0
4.7,3.2,1.3,0
4.6,3.1,1.5,0
5.0,3.6,0
5.4,3.9,1.7,0.4,3.4,0.3,0
4.4,2.9,0.1,3.7,0
4.8,1.6,0
4.3,1.1,0
5.8,4.0,1.2,0
5.7,4.4,0
5.1,3.8,1.0,3.3,0.5,1.9,0
5.2,4.1,0
5.5,4.2,0
4.5,2.3,0.6,0
5.3,0
7.0,4.7,1
6.4,4.5,1
6.9,4.9,1
5.5,1
6.5,2.8,4.6,1
5.7,1
6.3,1
4.9,2.4,1
6.6,1
5.2,2.7,1
5.0,2.0,1
5.9,1
6.0,2.2,1
6.1,1
5.6,1
6.7,1
5.8,1
6.2,2.5,4.8,1.8,4.3,1
6.8,5.0,2.6,5.1,1
5.4,1
5.1,6.0,2
5.8,2
7.1,5.9,2.1,2
6.3,5.6,2
6.5,5.8,2
7.6,6.6,2
4.9,2
7.3,6.3,2
6.7,2
7.2,6.1,2
6.4,5.3,2
6.8,5.5,2
5.7,2
7.7,6.7,6.9,2
6.0,2
6.9,5.7,2
5.6,2
6.2,2
6.1,2
7.4,2
7.9,6.4,5.4,5.2,2
5.9,2

代码怎么修改呢?

1). 导入必要的包:

from pyspark.context import SparkContext
from pyspark.conf import SparkConf
from tensorflowonspark import TFCluster,TFNode
#from com.yahoo.ml.tf import TFCluster,TFNode
from datetime import datetime

这里要注意,导入TFCluster的时候,不要参考官网的导入方式,而应该从tensorflowonspark导入;

2.) 修改main函数,比如我这里的函数run,只需要添加两个参数即可:(argv,cxt)

3) 把原来的main函数调用,替换成下面的调用方式 ,比如我这里原来只需要在main函数执行run即可,这里需要调用TFCluster.run,并且把我的run函数传递给第二个参数值:

sc = SparkContext(conf=SparkConf().setAppName("your_app_name"))
    num_executors = int(sc._conf.get("spark.executor.instances"))
    num_ps = 1
    tensorboard = True

    cluster = TFCluster.run(sc,run,sys.argv,num_executors,num_ps,tensorboard,TFCluster.InputMode.TENSORFLOW)
    cluster.shutdown()

然后就可以运行了,修改后的代码如下:
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
from pyspark.context import SparkContext
from pyspark.conf import SparkConf
from tensorflowonspark import TFCluster,TFNode
from datetime import datetime
import numpy as np
import sys
# from sklearn import metrics
# from sklearn import model_selection

import tensorflow as tf

X_FEATURE = 'x'  # Name of the input feature.

train_percent = 0.8


def load_data(data_file_name):
    data = np.loadtxt(open(data_file_name),y_test.astype(int)


def map_run(argv,ctx):
    # Load dataset.
    data_file = 'iris01.csv'
    iris = load_data(data_file)
    # x_train,axis= 1))
    # score with tensorflow.
    scores = classifier.evaluate(input_fn=test_input_fn)
    print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy']))

    print(classifier.params)


if __name__ == '__main__':
    import tensorflow as tf
    import sys
    sc = SparkContext(conf=SparkConf().setAppName("your_app_name"))
    num_executors = int(sc._conf.get("spark.executor.instances"))
    num_ps = 1
    tensorboard = False

    cluster = TFCluster.run(sc,map_run,TFCluster.InputMode.TENSORFLOW)
    cluster.shutdown()	

7. 设置环境变量,并运行:

1)上传iris01.csv到HDFS: hdfs dfs -put iris01.csv

2) 设置环境变量:

export PYTHON_ROOT=./Python
export LD_LIBRARY_PATH=${PATH}
export PYSPARK_PYTHON=${PYTHON_ROOT}/bin/python
export SPARK_YARN_USER_ENV="PYSPARK_PYTHON=Python/bin/python"
export PATH=${PYTHON_ROOT}/bin/:$PATH
#export QUEUE=gpu

# set paths to libjvm.so,libhdfs.so,and libcuda*.so
#export LIB_HDFS=/opt/cloudera/parcels/CDH/lib64                      # for CDH (per @wangyum)
export LIB_HDFS=$HADOOP_PREFIX/lib/native
export LIB_JVM=$JAVA_HOME/jre/lib/amd64/server
#export LIB_CUDA=/usr/local/cuda-7.5/lib64

# for cpu mode:
 export QUEUE=default

3) 调用代码
/usr/local/spark-1.5.1-bin-hadoop2.6/bin/spark-submit --master yarn --deploy-mode cluster --num-executors 3 --executor-memory 1024m --archives hdfs://s0:8020/user/root/Python.zip#Python,/root/iris01.csv /root/iris_c.py

4) 查看yarn日志,可以看到执行成功;

5. 问题及解决

1) libc.so.6: version `GLIBC_2.14' not found
这个问题是由于Centos6的版本其GLIBC的版本是2.12 ,版本过低导致的;
解决思路:
a. 升级版本, 这个选项不适用,由于这个软件是底层软件,升级后导致系统不稳定;
b. 编译一个可以在Centos6上运行的TensorFlow安装包,也就是本文的做法;

2)Cannot run program "patch" (in directory "/root/.cache/bazel/_bazel_root/6093305914d4a581ed00c0f6c06f975b/external/boringssl")
yum install patch

3)Traceback (most recent call last):
File "iris_c.py",line 6,in <module>
from com.yahoo.ml.tf import TFCluster,TFNode
ImportError: No module named com.yahoo.ml.tf

修改
from com.yahoo.ml.tf import TFCluster,TFNode
=》
from tensorflowonspark import TFCluster,TFNode


6. 总结

1. 在编译tensorflow的时候遇到很多问题,使用bing的国际版查询效果会更好;
2. 暂时只能使用终端设置环境变量的方式执行程序,并且程序执行很慢,后面可以考虑使用开发工具直连提交任务,并着手提升效率;

分享,成长,快乐 脚踏实地,专注 转载请注明blog地址:http://blog.csdn.net/fansy1990
原文链接:https://www.f2er.com/centos/375414.html

猜你在找的CentOS相关文章