我想知道如何实现这一点.我看着Wikipedia’s explanation of Introselect,只是让我更困惑. QSort和Median-Med的算法如何切换?
我在这里发现了Introsort的文章:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.5196&rep=rep1&type=pdf但是说:
In this paper,we concentrate on the sorting problem and return to the selection problem only briefly in a later section.
我试图阅读STL本身来了解如何实现nth_element,但是这样做真的很快.
解决方法
How is nth_element Implemented?
你已经回答过:
There are a lot of claims on StackOverflow and elsewhere that nth_element is O(n) and that it is typically implemented with Introselect.
我也可以通过查看我的stdlib实现来确认. (稍后再来)
而你不明白答案的那个人:
How can an algorithm switch between QSort and Median-of-Medians?
nth_element(first,nth,last) { if (first == last || nth == last) return; introselect(first,last,log2(last - first) * 2); } introselect(first,depth_limit) { while (last - first > 3) { if (depth_limit == 0) { // [NOTE by editor] This should be median-of-medians instead. // [NOTE by editor] See Azmisov's comment below heap_select(first,nth + 1,last); // Place the nth largest element in its final position. iter_swap(first,nth); return; } --depth_limit; cut = unguarded_partition_pivot(first,last); if (cut <= nth) first = cut; else last = cut; } insertion_sort(first,last); }
没有详细了解引用的函数heap_select和unguarded_partition_pivot,我们可以清楚地看到,nth_element给出了introselect 2 * log2(大小)细分步骤(在最佳情况下是quickselect所需的两倍),直到heap_select启动并解决了好.