我正在使用从
Features2D + Homography to find a known object教程编译和运行代码,我得到这个
OpenCV Error: Assertion Failed (npoints >= 0 && points2.checkVector(2) == npoint s && points1.type() == points2.type()) in unknown function,file c:\Users\vp\wor k\ocv\opencv\modules\calib3d\src\fundam.cpp,line 1062
运行时错误.调试后我发现程序在findHomography功能崩溃.
Unhandled exception at 0x760ab727 in OpenCVTemplateMatch.exe: Microsoft C++ exception: cv::Exception at memory location 0x0029eb3c..
在OpenCV的Introduction中,“cv命名空间”一章说
Some of the current or future OpenCV external names may conflict with STL or other libraries. In this case,use explicit namespace specifiers to resolve the name conflicts:
我改变了我的代码,并使用明确的命名空间说明符,但问题没有解决.如果可以,请帮我解决这个问题,或者说哪个功能和findHomography相同,不要崩溃程序.
这是我的代码
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/calib3d/calib3d.hpp" void readme(); /** @function main */ int main( int argc,char** argv ) { if( argc != 3 ) { readme(); return -1; } cv::Mat img_object = cv::imread( argv[1],CV_LOAD_IMAGE_GRAYSCALE ); cv::Mat img_scene = cv::imread( argv[2],CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; cv::SurfFeatureDetector detector( minHessian ); std::vector<cv::KeyPoint> keypoints_object,keypoints_scene; detector.detect( img_object,keypoints_object ); detector.detect( img_scene,keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors) cv::SurfDescriptorExtractor extractor; cv::Mat descriptors_object,descriptors_scene; extractor.compute( img_object,keypoints_object,descriptors_object ); extractor.compute( img_scene,keypoints_scene,descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher cv::FlannBasedMatcher matcher; std::vector< cv::DMatch > matches; matcher.match( descriptors_object,descriptors_scene,matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < descriptors_object.rows; i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } printf("-- Max dist : %f \n",max_dist ); printf("-- Min dist : %f \n",min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) std::vector< cv::DMatch > good_matches; for( int i = 0; i < descriptors_object.rows; i++ ) { if( matches[i].distance < 3*min_dist ) { good_matches.push_back( matches[i]); } } cv::Mat img_matches; cv::drawMatches( img_object,img_scene,good_matches,img_matches,cv::Scalar::all(-1),std::vector<char>(),cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector<cv::Point2f> obj; std::vector<cv::Point2f> scene; for( int i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); } cv::Mat H = cv::findHomography( obj,scene,CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector<cv::Point2f> obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols,0 ); obj_corners[2] = cvPoint( img_object.cols,img_object.rows ); obj_corners[3] = cvPoint( 0,img_object.rows ); std::vector<cv::Point2f> scene_corners(4); cv::perspectiveTransform( obj_corners,scene_corners,H); //-- Draw lines between the corners (the mapped object in the scene - image_2 ) cv::line( img_matches,scene_corners[0] + cv::Point2f( img_object.cols,0),scene_corners[1] + cv::Point2f( img_object.cols,cv::Scalar(0,255,4 ); cv::line( img_matches,scene_corners[2] + cv::Point2f( img_object.cols,cv::Scalar( 0,scene_corners[3] + cv::Point2f( img_object.cols,4 ); //-- Show detected matches cv::imshow( "Good Matches & Object detection",img_matches ); cv::waitKey(0); return 0; } /** @function readme */ void readme() { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }